早教吧 育儿知识 作业答案 考试题库 百科 知识分享

己知圆C:(x-x0)2+(y-y0)2=R2(R>0)与y轴相切(1)求x0与R的关系式(2)圆心C在直线l:x-3y=0上,且圆C截直线m:x-y=0所得的弦长为27,求圆C方程.

题目详情
02022
0
7
,求圆C方程.
7
7
7
▼优质解答
答案和解析
(1)根据题意得:|x00|=R;
(2)由圆心C在l:x-3y=0上,可设圆心C(3yoo,yoo),
∵圆C与y轴相切,∴R=3|yoo|,
∵圆心C到直线m的距离d=
|3yo-yo|
2
=
2
|yo|,
∴弦长=2
R2-d2
=2
7

∴2
9yo2-2yo2
=2
7

解得:y0=±1,
∴圆C(3,1)或(-3,-1),R=3,
则圆C方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.
|3yo-yo|
2
|3yo-yo||3yo-yo||3yo-yo|o-yo|o|
2
2
2
2
22=
2
|yo|,
∴弦长=2
R2-d2
=2
7

∴2
9yo2-2yo2
=2
7

解得:y0=±1,
∴圆C(3,1)或(-3,-1),R=3,
则圆C方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.
2
2
22|yoo|,
∴弦长=2
R2-d2
=2
7

∴2
9yo2-2yo2
=2
7

解得:y0=±1,
∴圆C(3,1)或(-3,-1),R=3,
则圆C方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.
R2-d2
R2-d2
R2-d2R2-d22-d22=2
7

∴2
9yo2-2yo2
=2
7

解得:y0=±1,
∴圆C(3,1)或(-3,-1),R=3,
则圆C方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.
7
7
77,
∴2
9yo2-2yo2
=2
7

解得:y0=±1,
∴圆C(3,1)或(-3,-1),R=3,
则圆C方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.
9yo2-2yo2
9yo2-2yo2
9yo2-2yo29yo2-2yo2o2-2yo22-2yo2o22=2
7

解得:y0=±1,
∴圆C(3,1)或(-3,-1),R=3,
则圆C方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.
7
7
77,
解得:y00=±1,
∴圆C(3,1)或(-3,-1),R=3,
则圆C方程为(x-3)22+(y-1)22=9或(x+3)22+(y+1)22=9.