早教吧作业答案频道 -->其他-->
(2014•福建模拟)已知函数y=f(x)是定义域为R的偶函数.当x≥0时,f(x)=(12)x,0≤x<2log16x,x≥2,若关于x的方程[f(x)]2+a•f(x)+b=0(a、b∈R)有且只有7个不同实数根,则实数a的取值
题目详情
(2014•福建模拟)已知函数y=f(x)是定义域为R的偶函数.当x≥0时,f(x)=
,若关于x的方程[f(x)]2+a•f(x)+b=0(a、b∈R)有且只有7个不同实数根,则实数a的取值范围是
|
-2<a<-
5 |
4 |
-2<a<-
.5 |
4 |
▼优质解答
答案和解析
由题意,f(x)在(-∞,-2]和[0,2]上是减函数,在[-2,0]和[2,+∞)上是增函数,
∴x=0时,函数取极大值1,x=±2时,取极小值
,
|x|≥16时,f(x)≥1,
∴关于x的方程[f(x)]2+a•f(x)+b=0(a、b∈R)有且只有7个不同实数根,
设t=f(x),
则方程t2+at+b=0必有两个根t1,t2,其中t1=1,t2∈(
,1),
t1+t2=-a∈(
,2),
则-2<a<-
a∈(-2,-
),
故答案为:-2<a<-
.
∴x=0时,函数取极大值1,x=±2时,取极小值
1 |
4 |

|x|≥16时,f(x)≥1,
∴关于x的方程[f(x)]2+a•f(x)+b=0(a、b∈R)有且只有7个不同实数根,
设t=f(x),
则方程t2+at+b=0必有两个根t1,t2,其中t1=1,t2∈(
1 |
4 |
t1+t2=-a∈(
5 |
4 |
则-2<a<-
5 |
4 |
a∈(-2,-
5 |
4 |
故答案为:-2<a<-
5 |
4 |
看了 (2014•福建模拟)已知函...的网友还看了以下:
tanA/tanB=(2c-b)/b.tanA/tanB=(2c-b)/b.sinA*cosB/( 2020-04-09 …
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
1、已知a,b,c互不相等求2a-b-c/(a-b)(b-c)+2b-c-a/(b-c)(b-a) 2020-05-16 …
已知实数a,b满足a+b=8,ab=15,且a>b,试求a-b的值解a+b=8,ab=15(a+b 2020-05-17 …
分解因式(a-b-c)(a+b-c)-(b-c-a)(b+c-a)正确答案是这个:(a+b-c)( 2020-05-17 …
已知a+b+c=0,试求a^2/(2a^2+bc)+b^2/(2b^2+ac)+c^2/(2c^2 2020-06-11 …
当a、b满足什么条件时,下列关系成立:(1)|a+b|=|a|+|b|;(2)|a+b|=||a| 2020-06-12 …
.请教A+B=A(B^T)B+A(A^T)B能写成A+B=AB(B^T)+(A^T)AB.请教A+ 2020-06-12 …
第一题令A={a,b,c,d,e},B={a,b,c,d,e,f,g,h}.求a)A∪Bb)A∩B 2020-06-17 …
(a+b+c)^3-(b+c-a)^3-(c+a-b)^3-(a+b-c)^3=[(a+b+c)^ 2020-08-02 …