早教吧作业答案频道 -->其他-->
如图所示,在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC交BC于E,交CD于F,FG∥AB交BC于G.试判断CE,CF,GB的数量关系,并说明理由.
题目详情

▼优质解答
答案和解析
CE=CF=GB.
理由如下:
(1)∵∠ACB=90°,
∴∠BAC+∠ABC=90°.
∵CD⊥AB,
∴∠ACD+∠CAD=90°.
∴∠ACD=∠ABC.
∵AE平分∠BAC,
∴∠BAE=∠CAE.
∵∠CEF=∠BAE+∠ABC,∠CFE=∠CAE+∠ACD,
∴∠CEF=∠CFE.
∴CE=CF(等角对等边).
(2)如图,过E作EH⊥AB于H,
∵AE平分∠BAC,EH⊥AB,EC⊥AC,
∴EH=EC(角平分线上的点到角两边的距离相等).
∴EH=CF.
∵FG∥AB,
∴∠CGF=∠EBH.
∵CD⊥AB,EH⊥AB,
∴∠CFG=∠EHB=90°.
在Rt△CFG和Rt△EHB中
∵∠CGF=∠EBH,∠CFG=∠EHB,CF=EH,
∴Rt△CFG≌Rt△EHB.
∴CG=EB.
∴CE=GB.
∴CE=CF=GB.
理由如下:
(1)∵∠ACB=90°,
∴∠BAC+∠ABC=90°.
∵CD⊥AB,
∴∠ACD+∠CAD=90°.
∴∠ACD=∠ABC.
∵AE平分∠BAC,
∴∠BAE=∠CAE.
∵∠CEF=∠BAE+∠ABC,∠CFE=∠CAE+∠ACD,
∴∠CEF=∠CFE.
∴CE=CF(等角对等边).
(2)如图,过E作EH⊥AB于H,

∵AE平分∠BAC,EH⊥AB,EC⊥AC,
∴EH=EC(角平分线上的点到角两边的距离相等).
∴EH=CF.
∵FG∥AB,
∴∠CGF=∠EBH.
∵CD⊥AB,EH⊥AB,
∴∠CFG=∠EHB=90°.
在Rt△CFG和Rt△EHB中
∵∠CGF=∠EBH,∠CFG=∠EHB,CF=EH,
∴Rt△CFG≌Rt△EHB.
∴CG=EB.
∴CE=GB.
∴CE=CF=GB.
看了 如图所示,在△ABC中,∠A...的网友还看了以下:
如图,二次函数y=ax2+bx+c=0(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点 2020-06-12 …
如图,一次函数y=ax+b(a≠0)的图象与反比例函数y=kx(k≠0)的图象相交于A、B两点,与 2020-06-14 …
如图,抛物线y=ax²+bx+c(a>0交x轴于A,B两点,交y轴于C点,A点在B点的左侧,已知B 2020-06-14 …
已知抛物线y=ax²+bx+c(a≠0)与x轴的两个交点的坐标分别为(2,0),(-3/2,0)则 2020-06-14 …
如图,已知:在平面直角坐标系中,直线l与y轴相交于点A(0,m)其中m<0,与x轴相交于点B(4, 2020-07-21 …
如图,二次函数y=-ax2+2ax+c(a>0)的图象交x轴于A,B两点,交y轴于点C,过A的直线 2020-08-02 …
二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相交于点C.连接AC、BC 2020-08-02 …
如图,在平面直角坐标系中,点A是反比例函数y1=kx(k≠0)图象上一点,AB⊥x轴于B点,一次函 2020-08-03 …
(2013•滨州)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于 2020-11-13 …
如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),顶点坐标为(1,n 2020-12-08 …