早教吧作业答案频道 -->数学-->
已知光滑曲线C:x=x(t),y=y(t),z=z(t)在点(x(t0),y(t0),z(t0))处切线的方向数为(x‘(t0),y’(t0),z‘(t0))求函数u=根号(x方+y方+z方)在点(2,2,1)处沿曲线L:x=2t,y=2(t方)z=t^4在该点切线方向的方向
题目详情
已知光滑曲线C:x=x(t),y=y(t),z=z(t)在点(x(t0),y(t0),z(t0))处切线的方向数为(x‘(t0),y’(t0),z‘(t0))求函数u=根号(x方+y方+z方)在点(2,2,1)处沿曲线L:x=2t,y=2(t方)z=t^4在该点切线方向的方向导数
▼优质解答
答案和解析
先计算切线的方向余弦,即曲线L在(2,2,1)点的切线方向向量为(2,4,4)
然后方向余弦为(1/3,2/3,2/3),即把方向向量单位化,除于它的模!
然后计算u对x,y,z的偏导数
∂u/∂x=x/√(x²+y²+z²)
∂u/∂y=y/√(x²+y²+z²)
∂u/∂z=z/√(x²+y²+z²)
偏导数在(2,2,1)点的值分别为 2/3,2/3 ,1/3
最后利用方向导数的计算公式
∂u/∂L|(2,2,1)=∂u/∂x|(2,2,1) * cosa+ ∂u/∂y|(2,2,1) * cosb+ ∂u/∂z|(2,2,1) * cosc
=(2/3)*(1/3)+(2/3)*(2/3)+(1/3)*(2/3)
=8/9
其中(cosa,cosb,cosc)就是切线的方向余弦!
然后方向余弦为(1/3,2/3,2/3),即把方向向量单位化,除于它的模!
然后计算u对x,y,z的偏导数
∂u/∂x=x/√(x²+y²+z²)
∂u/∂y=y/√(x²+y²+z²)
∂u/∂z=z/√(x²+y²+z²)
偏导数在(2,2,1)点的值分别为 2/3,2/3 ,1/3
最后利用方向导数的计算公式
∂u/∂L|(2,2,1)=∂u/∂x|(2,2,1) * cosa+ ∂u/∂y|(2,2,1) * cosb+ ∂u/∂z|(2,2,1) * cosc
=(2/3)*(1/3)+(2/3)*(2/3)+(1/3)*(2/3)
=8/9
其中(cosa,cosb,cosc)就是切线的方向余弦!
看了 已知光滑曲线C:x=x(t)...的网友还看了以下:
复变函数题,曲线Z=(2+i)t在映射W=Z^2下的象曲线为(曲线Z=(2+i)t在映射W=Z^2 2020-06-06 …
如果O+O=U+U+U,O+Z=U+U+U+U,那么Z+Z+U=()个O.如果设U=6,那么O=( 2020-06-18 …
设方程F(x+z,xy,z)=0确定了隐函数z=z(x,y),其中F具有连续一阶偏导数,求δz/. 2020-06-27 …
矩阵坐标变换问题有两个坐标系a(x,y,z),b(x3,y3,z3)b坐标是由a坐标系通过3次旋转 2020-06-27 …
设x>y>z,n为整数,且1/x-y + 1/y-z ≥ n/x-z恒成立,那么n最大值多少?设x 2020-06-27 …
在直角坐标系xOy中,直线Z的参数方程为(t为参数,且t>0);以原点O为极点,以x轴的正半轴为极 2020-07-30 …
复数题---在线设z为复数,D为满足条件||z|-1|+|z|-1=0的点Z所构成图形的边界.若复 2020-08-01 …
8+6i的平方根?设Z,Z'为共轭复数且(Z+Z')^2-3Z*Z'i=4—6i求这两个复数我求出 2020-08-02 …
已经y=3x+15°z=2x+25°如果y和z互为补角,分别求出y和z的度数并且给我解释下什么是补 2020-08-02 …
W,X,Y,Z为短周期内除稀有气体元素外的4种元素,它们的原子序数依次增大,其中只有Y为金属元素,Y 2021-01-05 …