早教吧作业答案频道 -->数学-->
已知光滑曲线C:x=x(t),y=y(t),z=z(t)在点(x(t0),y(t0),z(t0))处切线的方向数为(x‘(t0),y’(t0),z‘(t0))求函数u=根号(x方+y方+z方)在点(2,2,1)处沿曲线L:x=2t,y=2(t方)z=t^4在该点切线方向的方向
题目详情
已知光滑曲线C:x=x(t),y=y(t),z=z(t)在点(x(t0),y(t0),z(t0))处切线的方向数为(x‘(t0),y’(t0),z‘(t0))求函数u=根号(x方+y方+z方)在点(2,2,1)处沿曲线L:x=2t,y=2(t方)z=t^4在该点切线方向的方向导数
▼优质解答
答案和解析
先计算切线的方向余弦,即曲线L在(2,2,1)点的切线方向向量为(2,4,4)
然后方向余弦为(1/3,2/3,2/3),即把方向向量单位化,除于它的模!
然后计算u对x,y,z的偏导数
∂u/∂x=x/√(x²+y²+z²)
∂u/∂y=y/√(x²+y²+z²)
∂u/∂z=z/√(x²+y²+z²)
偏导数在(2,2,1)点的值分别为 2/3,2/3 ,1/3
最后利用方向导数的计算公式
∂u/∂L|(2,2,1)=∂u/∂x|(2,2,1) * cosa+ ∂u/∂y|(2,2,1) * cosb+ ∂u/∂z|(2,2,1) * cosc
=(2/3)*(1/3)+(2/3)*(2/3)+(1/3)*(2/3)
=8/9
其中(cosa,cosb,cosc)就是切线的方向余弦!
然后方向余弦为(1/3,2/3,2/3),即把方向向量单位化,除于它的模!
然后计算u对x,y,z的偏导数
∂u/∂x=x/√(x²+y²+z²)
∂u/∂y=y/√(x²+y²+z²)
∂u/∂z=z/√(x²+y²+z²)
偏导数在(2,2,1)点的值分别为 2/3,2/3 ,1/3
最后利用方向导数的计算公式
∂u/∂L|(2,2,1)=∂u/∂x|(2,2,1) * cosa+ ∂u/∂y|(2,2,1) * cosb+ ∂u/∂z|(2,2,1) * cosc
=(2/3)*(1/3)+(2/3)*(2/3)+(1/3)*(2/3)
=8/9
其中(cosa,cosb,cosc)就是切线的方向余弦!
看了 已知光滑曲线C:x=x(t)...的网友还看了以下:
数轴上点A表示的数是X.点.数轴上点A表示的数是X,点B表示的数是-3,如果线段AB的长等于5,则 2020-06-03 …
给正方形的四个顶点标上数字0,1,1,2记作第一个正方形,依次取个边中心,标上所在边两端点数字的和 2020-06-18 …
我国古代的“河图”是由3*3的方格构成的,每个方格内均有数目不同的点图,每一行、每一列以及每一条对 2020-06-23 …
已知光滑曲线C:x=x(t),y=y(t),z=z(t)在点(x(t0),y(t0),z(t0)) 2020-07-10 …
如图所示,水平面上A、B两质点在t0时刻位于直线MN上的P、Q两点,并具有相同的速度v0.质点A绕 2020-07-13 …
在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的 2020-11-18 …
现有3×3的方格,每个小方格内均有数目不同的点图,要求方格内每一行,每一列以及每一条对角线上的三个点 2020-11-18 …
从塔顶由静止释放一个小球A的时刻为计时零点,t0时刻又在与A球t0时刻所在位置的同一水平高度,由静止 2020-11-21 …
如图(甲)所示,水平面上的平行导轨MN、PQ上放着两根导体棒ab、cd,两棒间用绝缘丝线系住.开始匀 2020-12-25 …
中国围棋规则判断胜负问题?“棋盘总点数的一半180.5点为归本数.一方总得点数超过此数为胜,等于此数 2020-12-29 …