早教吧作业答案频道 -->数学-->
如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+2|+(b+3a)2=0(1)求A、B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在
题目详情
如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+2|+(b+3a)2=0
(1)求A、B两点之间的距离;
(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;
(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以
原来的速度向相反的方向运动,设运动的时间为t(秒),
①分别表示甲、乙两小球到原点的距离(用t表示);
②求甲、乙两小球到原点的距离相等时经历的时间.
(1)求A、B两点之间的距离;
(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;
(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以

①分别表示甲、乙两小球到原点的距离(用t表示);
②求甲、乙两小球到原点的距离相等时经历的时间.
▼优质解答
答案和解析
(1)∵|a+2|+(b+3a)2=0,
a+2=0,b+3a=0,
∴a=-2,b=6;
∴AB的距离=|b-a|=8;
(2)设数轴上点C表示的数为c.
∵AC=2BC,
∴|c-a|=2|c-b|,即|c+2|=2|c-6|.
∵AC=2BC>BC,
∴点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.
①当C点在线段AB上时,则有-2≤c≤6,
得c+2=2(6-c),解得c=
;
②当C点在线段AB的延长线上时,则有c>6,
得c+2=2(c-6),解得c=14.
故当AC=2BC时,c=
或c=14;
(3)①∵甲球运动的路程为:1•t=t,OA=2,
∴甲球与原点的距离为:t+2;
乙球到原点的距离分两种情况:
(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,
∵OB=6,乙球运动的路程为:2•t=2t,
∴乙球到原点的距离为:6-2t;
(Ⅱ)当t>3时,乙球从原点O处开始一直向右运动,
此时乙球到原点的距离为:2t-6;
②当0<t≤3时,得t+2=6-2t,
解得t=
;
当t>3时,得t+2=2t-6,
解得t=8.
故当t=
秒或t=8秒时,甲乙两小球到原点的距离相等.
a+2=0,b+3a=0,
∴a=-2,b=6;
∴AB的距离=|b-a|=8;
(2)设数轴上点C表示的数为c.
∵AC=2BC,
∴|c-a|=2|c-b|,即|c+2|=2|c-6|.
∵AC=2BC>BC,
∴点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.
①当C点在线段AB上时,则有-2≤c≤6,
得c+2=2(6-c),解得c=
10 |
3 |
②当C点在线段AB的延长线上时,则有c>6,
得c+2=2(c-6),解得c=14.
故当AC=2BC时,c=
10 |
3 |
(3)①∵甲球运动的路程为:1•t=t,OA=2,
∴甲球与原点的距离为:t+2;
乙球到原点的距离分两种情况:
(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,
∵OB=6,乙球运动的路程为:2•t=2t,
∴乙球到原点的距离为:6-2t;
(Ⅱ)当t>3时,乙球从原点O处开始一直向右运动,
此时乙球到原点的距离为:2t-6;
②当0<t≤3时,得t+2=6-2t,
解得t=
4 |
3 |
当t>3时,得t+2=2t-6,
解得t=8.
故当t=
4 |
3 |
看了 如图,在数轴上A点表示数a,...的网友还看了以下:
求抛物线y^2=x上的点和圆(x-3)^2+y^2=1上的点之间的最短距离需要详细过程,谢谢! 2020-03-31 …
求抛物线y*y=x上的点和圆(x-3)*(x-3)+y*y=1上的点之间的最短距离. 2020-05-20 …
高等数学2一道关于空间解析几何的问题直线x/1=(y+7)/2=(z-3)/-1上与点(3,2,6 2020-06-10 …
(2010•温州一模)在空间直角坐标系O-xyz中,称球面S:x2+y2+z2=1上的点N(0,0 2020-06-14 …
1已知双曲线x2/25-y2/24=1上一点M到右准线的距离是10,F2是右焦点,N是MF2的中点 2020-07-09 …
在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x 2020-07-19 …
p(x0,y0)(x0不=+-a)是双曲线E:x^2/a^2-y^2/b^2=1上一点,M,N分别 2020-07-26 …
已知点F(0,1),点P在x轴上运动,M点在y轴上,N为动点,且满足PM•PF=0,PN+PM=0 2020-07-29 …
[0过曲线y=4乘以x的立方+x+1上的点(0,1)作切线,求此切线在区间[0,1]上的一段的长. 2020-07-31 …
发动机考试作弊1.上止点:活塞顶距离曲轴旋转中心最远的位置.2.下止点:活塞顶距离曲轴旋转中心最近的 2020-11-06 …