早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知点F(0,1),点P在x轴上运动,M点在y轴上,N为动点,且满足PM•PF=0,PN+PM=0.(1)求动点N的轨迹C方程;(2)由直线y=-1上一点Q向曲线C引两条切线,切点分别为A,B,求证:AQ⊥BQ.

题目详情
已知点F(0,1),点P在x轴上运动,M点在y轴上,N为动点,且满足
PM
PF
=0,
PN
+
PM
=0.
(1)求动点N的轨迹C方程;
(2)由直线y=-1上一点Q向曲线C引两条切线,切点分别为A,B,求证:AQ⊥BQ.
▼优质解答
答案和解析
(1)设N(x,y).
PN
+
PM
=0,
故P的坐标为(
x
2
,0),M(0,-y),
于是,
PM
=(−
x
2
,−y),
PF
=(−
x
2
,1).
PM
PF
=0,
即得曲线C的方程为x2=4y
(2)设Q(m,-1).
由题意,两条切线的斜率k均存在,
故可设两切线方程为y=k(x-m)-1.
将上述方程代入x2=4y,
得x2-4kx+4km+4=0.
依题意,△=(-4k)2-4(4km+4)=0,
即k2-mk-1=0.
上述方程的两根即为两切线的斜率,
由根与系数的关系,其积为-1,即它们所在直线互相垂直
∴AQ⊥BQ