早教吧作业答案频道 -->数学-->
已知数列{an}(n∈N*),若{an+an+1}为等比数列,则称{an}具有性质P.(1)若数列{an}具有性质P,且a1=a2=1,a3=3,求a4、a5的值;(2)若bn=2n+(-1)n,求证:数列{bn}具有性质P;(3)设c1+c2+…+cn=
题目详情
已知数列{an}(n∈N*),若{an+an+1}为等比数列,则称{an}具有性质P.
(1)若数列{an}具有性质P,且a1=a2=1,a3=3,求a4、a5的值;
(2)若bn=2n+(-1)n,求证:数列{bn}具有性质P;
(3)设c1+c2+…+cn=n2+n,数列{dn}具有性质P,其中d1=1,d3-d2=c1,d2+d3=c2,若dn>102,求正整数n的取值范围.
(1)若数列{an}具有性质P,且a1=a2=1,a3=3,求a4、a5的值;
(2)若bn=2n+(-1)n,求证:数列{bn}具有性质P;
(3)设c1+c2+…+cn=n2+n,数列{dn}具有性质P,其中d1=1,d3-d2=c1,d2+d3=c2,若dn>102,求正整数n的取值范围.
▼优质解答
答案和解析
(1){an+an+1}为等比数列,
∵a1=a2=1,a3=3,
∴a1+a2=1+1=2,a2+a3=1+3=4,
∴{an+an+1}的公比为2,
∴an+an+1=2n,
∴a3+a4=23=8,即a4=5,
∴a4+a5=24=16,即a5=11;
(2)∵bn=2n+(-1)n,
∴bn+bn+1=2n+(-1)n+2n+1+(-1)n+1=3•2n,
∴{bn+bn+1}是以公比为2的等比数列,
∴数列{bn}具有性质P.
(3)∵c1+c2+…+cn=n2+n,
∴c1+c2+…+cn-1=(n-1)2+n-1,
∴cn=2n,
∵d1=1,d3-d2=c1=2,d2+d3=c2=4,
∴d2=1,d3=3,
∵数列{dn}具有性质P,
由(1)可得,dn+dn+1=2n,∴d4=5,d5=11,d6=21,d7=43,d8=85,d9=171,
∵dn>102,∴正整数n的取值范围是[9,+∞).
∵a1=a2=1,a3=3,
∴a1+a2=1+1=2,a2+a3=1+3=4,
∴{an+an+1}的公比为2,
∴an+an+1=2n,
∴a3+a4=23=8,即a4=5,
∴a4+a5=24=16,即a5=11;
(2)∵bn=2n+(-1)n,
∴bn+bn+1=2n+(-1)n+2n+1+(-1)n+1=3•2n,
∴{bn+bn+1}是以公比为2的等比数列,
∴数列{bn}具有性质P.
(3)∵c1+c2+…+cn=n2+n,
∴c1+c2+…+cn-1=(n-1)2+n-1,
∴cn=2n,
∵d1=1,d3-d2=c1=2,d2+d3=c2=4,
∴d2=1,d3=3,
∵数列{dn}具有性质P,
由(1)可得,dn+dn+1=2n,∴d4=5,d5=11,d6=21,d7=43,d8=85,d9=171,
∵dn>102,∴正整数n的取值范围是[9,+∞).
看了 已知数列{an}(n∈N*)...的网友还看了以下:
△ABC三边abc和面积满足S=c2-(a-b)2,且a+b=2△ABC的三边a,b,c和面积S满 2020-04-27 …
大家帮我看看这个lingo小程序啊,总是说没有可行解data:a1,a2,b1,b2,c1,c2, 2020-05-13 …
在直角坐标系xOy.圆C1:x2+y2=4,圆C2:(x-2)2+y2=4.(1)在以O为极点,x 2020-06-14 …
已知椭圆C1:x^2/4+y^2=1和C2:x^2/16+y^2/4=1,判断椭圆C2与C1是否相 2020-07-06 …
设两圆C1,C2都和两坐标轴相切,且都过点(4,1)设两圆C1、C2都和两坐标轴相切,且都过点(4 2020-07-09 …
已知:a+b+c=0.求1/(b2+c2-a2)+1/(c2+a2-b2)+1/(a2+b2-c2 2020-07-09 …
三个电容器,电容分别为C1,C2,C3,C2与C3并联,(C2与C3并联)与C1串连,加载电路两端 2020-07-09 …
求方程的特解,e^y+C1=(x+C2)^2是方程y''+(y')^2=2e^(-y)的通解求满足 2020-07-31 …
已知两圆C1:(x+3)^2+(y-1)^2=4和C2:(x-4)^2+(y-5)^2=4若存在过点 2020-11-01 …
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)x=0的基础解系为η1和η2,则A的属于λ 2020-11-02 …