早教吧作业答案频道 -->数学-->
中值定理的问题函数f(x)=x-(3/2)x^(1/3)在下列区间上不满足拉格朗日中值定理的条件是-1≤x≤1.能告诉我这是为什么吗,能有过程就好lim{x->0-}[f(x)-f(0)]/[x-0]=lim{x->0-}1-(3/2)x^(-1/3)这一步里面分
题目详情
中值定理的问题
函数f(x)=x-(3/2)x^(1/3)在下列区间上不满足拉格朗日中值定理的条件是-1≤x≤1.能告诉我这是为什么吗,能有过程就好
lim {x->0-} [f(x)-f(0)]/[x-0]
=lim {x->0-} 1-(3/2)x^(-1/3)
这一步里面分母的[x-o]怎么没有了?分母不是等于-0-0=-0吗?式子的最后判断出正无穷也不是很懂。
我还想问一下 就是这原本是道选择题,选项里面都含有0,只不过是0不是在区间左端点要不就是再右端点的“闭区间”里,不是在开区间里 这样的写法可以吗,如果不行那岂不是错题了
函数f(x)=x-(3/2)x^(1/3)在下列区间上不满足拉格朗日中值定理的条件是-1≤x≤1.能告诉我这是为什么吗,能有过程就好
lim {x->0-} [f(x)-f(0)]/[x-0]
=lim {x->0-} 1-(3/2)x^(-1/3)
这一步里面分母的[x-o]怎么没有了?分母不是等于-0-0=-0吗?式子的最后判断出正无穷也不是很懂。
我还想问一下 就是这原本是道选择题,选项里面都含有0,只不过是0不是在区间左端点要不就是再右端点的“闭区间”里,不是在开区间里 这样的写法可以吗,如果不行那岂不是错题了
▼优质解答
答案和解析
因为f(x)在0点不可导,而拉格朗日定理必须是:
[a,b]上连续,(a,b)可导
这种情况才行.
证明:
f(0)=0
左导数:f'(0-)=lim {x->0-} [f(x)-f(0)]/[x-0]
=lim {x->0-} 1-(3/2)x^(-1/3)
=正无穷
右导数:f'(0+)=lim {x->0+} [f(x)-f(0)]/[x-0]
=lim {x->0+} 1-(3/2)x^(-1/3)
=负无穷
所以0点不可导,找一个包含0的区间就是答案.
0出现在端点应该是可以的.因为拉格朗日中值定理的描述是:
在(a,b)内存在一点c,使得f'(c)=[f(b)-f(a)]/(b-a)
所以求导的点必定不会在端点,故端点为0不会影响定理的应用.
[a,b]上连续,(a,b)可导
这种情况才行.
证明:
f(0)=0
左导数:f'(0-)=lim {x->0-} [f(x)-f(0)]/[x-0]
=lim {x->0-} 1-(3/2)x^(-1/3)
=正无穷
右导数:f'(0+)=lim {x->0+} [f(x)-f(0)]/[x-0]
=lim {x->0+} 1-(3/2)x^(-1/3)
=负无穷
所以0点不可导,找一个包含0的区间就是答案.
0出现在端点应该是可以的.因为拉格朗日中值定理的描述是:
在(a,b)内存在一点c,使得f'(c)=[f(b)-f(a)]/(b-a)
所以求导的点必定不会在端点,故端点为0不会影响定理的应用.
看了 中值定理的问题函数f(x)=...的网友还看了以下:
(1-3/x+2)÷(x-1/x^2+2x)-x/x+1,其中x满足x^2-x-1=0先化简再求( 2020-05-14 …
问一行列式题行列式题 |x 1 1 1| |x+3 1 1 1||1-x x-1 1 1|=| 0 2020-05-14 …
一道数学问题方程(x+y-1)*[根号(x-1)]=0表示什么曲线?解:由方程(x+y-1)*[根 2020-05-14 …
已知函数f(x)=x-1-alnx (a∈R).求证:f(x)≥0恒成立的充要条件是a=1②必要性 2020-05-15 …
functionf=myfun(X)f=0.34*X(1)+0.004*X(2)+0.14*X(3 2020-05-21 …
关于奇函数的问题,已知f(x+1)是定义域在R上的奇函数,则f(x+1)的对称中心是什么?f(x) 2020-06-09 …
高数极限的问题刚才搜了一个题目X趋向无穷大lim[((2+x)^1.5-x^1.5)/[(x)^( 2020-06-27 …
给出如下方程的区间,其中所给方程在所给区间上有实数解的是1.x^3-x-1=0,[0,1]2.lo 2020-08-02 …
x的平方+x+1=0的解x=1对吗x2+x+1=0移项有x2=-x-1等式两边同时除以x,有x=-1 2020-11-07 …
证明下列方程在指定区间中必有根:1)x^3-x+1=0区间(1,2)2)x*3^x=1区间(0,1) 2020-12-31 …