早教吧作业答案频道 -->数学-->
双曲线1,已知双曲线x^2-y^2/2=1的焦点为F1、F2,点M在曲线上且MF1*MF2=0求点M到x轴的距离2,在面积为1的△PMN中,tan∠PMN=1/2.tan∠MNP=-2,建立适当坐标系,求以M、N为焦点且过点P的双曲线方程
题目详情
双曲线
1,已知双曲线x^2-y^2/2=1的焦点为F1、F2,点M在曲线上且MF1*MF2=0求点M到x轴的距离
2,在面积为1的△PMN中,tan∠PMN=1/2.tan∠MNP=-2,建立适当坐标系,求以M、N为焦点且过点P的双曲线方程
1,已知双曲线x^2-y^2/2=1的焦点为F1、F2,点M在曲线上且MF1*MF2=0求点M到x轴的距离
2,在面积为1的△PMN中,tan∠PMN=1/2.tan∠MNP=-2,建立适当坐标系,求以M、N为焦点且过点P的双曲线方程
▼优质解答
答案和解析
1、设M至X轴距离为h,向量MF1*MF2=0,|MF2|,|MF1|-|MF2|=2a=2,
根据勾股定理,MF2^2+(MF2+2)^2=(2√3)^2,
设|MF2|=x,x^2+(x+2)^2=12,x=√5-1,
|MF2|=√5-1,|MF1|=√5+1,
|MF1|*|MF2|=|F1F2|*h,
h=2√3/3.
2、tan∠PMN=1/2
tan∠MNP=-2,作PQ⊥MN,
PQ/NQ=tanPQ/MQ=tan设|MN|=m, NQ=m/3,|PQ|=2m/3,
根据勾股定理,
|PM|=2√5/3m,|PN|=m√5/3,
2a=|PM|-|PN|=m√5/3,
a=m√5/6,
c=|MN|/2=m/2,
S△PMN=|PQ|*|MN|/2=(2m/3)*m/2=m^2/3=1,
m=√3,
a=√15/6,
c=√3/2,
b^2=c^2-a^2=1/3,
双曲线方程为:x^2/(5/12)-y^2/(1/3)=1,
12x^2/5-3y^2=1.
根据勾股定理,MF2^2+(MF2+2)^2=(2√3)^2,
设|MF2|=x,x^2+(x+2)^2=12,x=√5-1,
|MF2|=√5-1,|MF1|=√5+1,
|MF1|*|MF2|=|F1F2|*h,
h=2√3/3.
2、tan∠PMN=1/2
tan∠MNP=-2,
PQ/NQ=tan
根据勾股定理,
|PM|=2√5/3m,|PN|=m√5/3,
2a=|PM|-|PN|=m√5/3,
a=m√5/6,
c=|MN|/2=m/2,
S△PMN=|PQ|*|MN|/2=(2m/3)*m/2=m^2/3=1,
m=√3,
a=√15/6,
c=√3/2,
b^2=c^2-a^2=1/3,
双曲线方程为:x^2/(5/12)-y^2/(1/3)=1,
12x^2/5-3y^2=1.
看了 双曲线1,已知双曲线x^2-...的网友还看了以下:
求动点M的轨迹方程已知圆的方程(X+1)²+(Y)²=25圆心为C(-1,0)A(1,0)是圆内一个 2020-03-30 …
椭圆方程问题已知椭圆方程x^2/a^2+Y^2/b^2=1,又已知椭圆外一点P(x0,y0),过P 2020-05-15 …
已知椭圆C:x^2/2+y^2=1的左右焦点为F1,F2,下顶点为A,P是椭圆上任一点,圆M是以p 2020-06-02 …
已知A1A2为圆X*X+y*y=1与X轴的两个交点,p1p2为垂直于X轴的弦,且A1p1与A2p2 2020-07-13 …
已知圆C:(x+3)2+y2=4,P为圆C上任一点,A(3,0)为定点,AP的中点为M.求:(1) 2020-07-15 …
已知圆O:x²+y²=1和点M(4,2)过点M向圆O引切线L求直线L的方程求以M为圆心,且被直线y 2020-07-26 …
求三角形MAQ垂心的轨迹方程.急过圆O:x^2+y^2=4与y轴正半轴的交点A做这个圆的切线L,点 2020-07-30 …
已知抛物线C的顶点在原点准线为X=-1(1)求抛物线C的方程?(2)设直线X=-1与X轴交于M点, 2020-07-31 …
点M在数轴上对应的点是m点M在数轴上对应的数为m,点N对应的数为n,且M、N、满足|m+3|+(n- 2020-11-18 …
(1/2)已知直线方程mx-y-m-1=0,圆的方程x^2+y^2-4x-2y+1=0.当m为何值时 2021-01-12 …