早教吧作业答案频道 -->数学-->
双曲线1,已知双曲线x^2-y^2/2=1的焦点为F1、F2,点M在曲线上且MF1*MF2=0求点M到x轴的距离2,在面积为1的△PMN中,tan∠PMN=1/2.tan∠MNP=-2,建立适当坐标系,求以M、N为焦点且过点P的双曲线方程
题目详情
双曲线
1,已知双曲线x^2-y^2/2=1的焦点为F1、F2,点M在曲线上且MF1*MF2=0求点M到x轴的距离
2,在面积为1的△PMN中,tan∠PMN=1/2.tan∠MNP=-2,建立适当坐标系,求以M、N为焦点且过点P的双曲线方程
1,已知双曲线x^2-y^2/2=1的焦点为F1、F2,点M在曲线上且MF1*MF2=0求点M到x轴的距离
2,在面积为1的△PMN中,tan∠PMN=1/2.tan∠MNP=-2,建立适当坐标系,求以M、N为焦点且过点P的双曲线方程
▼优质解答
答案和解析
1、设M至X轴距离为h,向量MF1*MF2=0,|MF2|,|MF1|-|MF2|=2a=2,
根据勾股定理,MF2^2+(MF2+2)^2=(2√3)^2,
设|MF2|=x,x^2+(x+2)^2=12,x=√5-1,
|MF2|=√5-1,|MF1|=√5+1,
|MF1|*|MF2|=|F1F2|*h,
h=2√3/3.
2、tan∠PMN=1/2
tan∠MNP=-2,作PQ⊥MN,
PQ/NQ=tanPQ/MQ=tan设|MN|=m, NQ=m/3,|PQ|=2m/3,
根据勾股定理,
|PM|=2√5/3m,|PN|=m√5/3,
2a=|PM|-|PN|=m√5/3,
a=m√5/6,
c=|MN|/2=m/2,
S△PMN=|PQ|*|MN|/2=(2m/3)*m/2=m^2/3=1,
m=√3,
a=√15/6,
c=√3/2,
b^2=c^2-a^2=1/3,
双曲线方程为:x^2/(5/12)-y^2/(1/3)=1,
12x^2/5-3y^2=1.
根据勾股定理,MF2^2+(MF2+2)^2=(2√3)^2,
设|MF2|=x,x^2+(x+2)^2=12,x=√5-1,
|MF2|=√5-1,|MF1|=√5+1,
|MF1|*|MF2|=|F1F2|*h,
h=2√3/3.
2、tan∠PMN=1/2
tan∠MNP=-2,
PQ/NQ=tan
根据勾股定理,
|PM|=2√5/3m,|PN|=m√5/3,
2a=|PM|-|PN|=m√5/3,
a=m√5/6,
c=|MN|/2=m/2,
S△PMN=|PQ|*|MN|/2=(2m/3)*m/2=m^2/3=1,
m=√3,
a=√15/6,
c=√3/2,
b^2=c^2-a^2=1/3,
双曲线方程为:x^2/(5/12)-y^2/(1/3)=1,
12x^2/5-3y^2=1.

看了 双曲线1,已知双曲线x^2-...的网友还看了以下:
已知数列{an}中,a1=1且点pn(an,an+1)(n∈N+)在直线x-y+1=0上,(1)求 2020-05-13 …
,;定义在正整数集f(x)对任意m,n,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且 2020-05-13 …
(1)若函数f(x)=xx+2(x>0),且f1(x)=f(x)=xx+2,当n∈N*且n≥2时, 2020-05-13 …
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[ 2020-05-21 …
已知f(x)、g(x)都是定义在R上的函数,g(x)≠0,f(x)g(x)=ax,且f′(x)g( 2020-06-16 …
设f(n)=log(n+1)(n+2)(n属于N+),设f(n)=log(n+1)(n+2)(n属 2020-06-25 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
1.设f(n)>0(n∈N*),f(2)=4,并且对于任意n1,n2∈N*,f(n1+n2)=f( 2020-07-22 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
已知函数f(x)的定义域R,对任意实数m,n都有f(m+n)=f(m)×f(n),且当x>0时.0< 2020-12-08 …