早教吧作业答案频道 -->数学-->
双曲线1,已知双曲线x^2-y^2/2=1的焦点为F1、F2,点M在曲线上且MF1*MF2=0求点M到x轴的距离2,在面积为1的△PMN中,tan∠PMN=1/2.tan∠MNP=-2,建立适当坐标系,求以M、N为焦点且过点P的双曲线方程
题目详情
双曲线
1,已知双曲线x^2-y^2/2=1的焦点为F1、F2,点M在曲线上且MF1*MF2=0求点M到x轴的距离
2,在面积为1的△PMN中,tan∠PMN=1/2.tan∠MNP=-2,建立适当坐标系,求以M、N为焦点且过点P的双曲线方程
1,已知双曲线x^2-y^2/2=1的焦点为F1、F2,点M在曲线上且MF1*MF2=0求点M到x轴的距离
2,在面积为1的△PMN中,tan∠PMN=1/2.tan∠MNP=-2,建立适当坐标系,求以M、N为焦点且过点P的双曲线方程
▼优质解答
答案和解析
1、设M至X轴距离为h,向量MF1*MF2=0,|MF2|,|MF1|-|MF2|=2a=2,
根据勾股定理,MF2^2+(MF2+2)^2=(2√3)^2,
设|MF2|=x,x^2+(x+2)^2=12,x=√5-1,
|MF2|=√5-1,|MF1|=√5+1,
|MF1|*|MF2|=|F1F2|*h,
h=2√3/3.
2、tan∠PMN=1/2
tan∠MNP=-2,作PQ⊥MN,
PQ/NQ=tanPQ/MQ=tan设|MN|=m, NQ=m/3,|PQ|=2m/3,
根据勾股定理,
|PM|=2√5/3m,|PN|=m√5/3,
2a=|PM|-|PN|=m√5/3,
a=m√5/6,
c=|MN|/2=m/2,
S△PMN=|PQ|*|MN|/2=(2m/3)*m/2=m^2/3=1,
m=√3,
a=√15/6,
c=√3/2,
b^2=c^2-a^2=1/3,
双曲线方程为:x^2/(5/12)-y^2/(1/3)=1,
12x^2/5-3y^2=1.
根据勾股定理,MF2^2+(MF2+2)^2=(2√3)^2,
设|MF2|=x,x^2+(x+2)^2=12,x=√5-1,
|MF2|=√5-1,|MF1|=√5+1,
|MF1|*|MF2|=|F1F2|*h,
h=2√3/3.
2、tan∠PMN=1/2
tan∠MNP=-2,
PQ/NQ=tan
根据勾股定理,
|PM|=2√5/3m,|PN|=m√5/3,
2a=|PM|-|PN|=m√5/3,
a=m√5/6,
c=|MN|/2=m/2,
S△PMN=|PQ|*|MN|/2=(2m/3)*m/2=m^2/3=1,
m=√3,
a=√15/6,
c=√3/2,
b^2=c^2-a^2=1/3,
双曲线方程为:x^2/(5/12)-y^2/(1/3)=1,
12x^2/5-3y^2=1.
看了 双曲线1,已知双曲线x^2-...的网友还看了以下:
已知点A是抛物线x2=4y的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且满足|PA|=m 2020-04-08 …
离心率的定义,急!为什么离心率定义既是动点到焦点的距离和动点到准线的距离之比离心率定义又为椭圆两焦 2020-04-26 …
已知椭圆C的焦点在x轴上,中心为坐标原点.椭圆C上的点到焦点的最远距离是6,最近距离是2.求(1) 2020-05-13 …
已知椭圆焦距的1/2等于焦点到相应准线的距离,则此椭圆的离心率为已知椭圆焦距的1/2等于焦点到相应 2020-05-15 …
急:已知椭圆上任意一点到两个焦点的距离之和为2a,焦距为2c,且a+c=10,a-c=4,求椭圆的 2020-05-15 …
在做“凸透镜成像”的实验时,当烛焰离凸透镜60cm时,移动光屏,屏上出现一个清晰的、缩小的像,此时 2020-05-16 …
已知椭圆的焦点在Y轴上,椭圆上任意一点到两焦点的距离之和为20,焦点离最远顶点的距离为16,求椭圆 2020-06-04 …
己知椭圆的焦点在Y轴上,椭圆上任意一点到两焦点的距离之和为20,焦点离最远顶点的距离为16,求椭圆 2020-06-04 …
照相时,被拍摄物体到镜头的距离与照相机镜头焦距的关系应为A.物体在2倍焦距之外B.物体在焦距和2倍 2020-06-15 …
凸透镜成像题我们知道焦距的计算公式为1/u+1/v=1/f,若一已知一凸透镜的焦距为10厘米,则当 2020-07-02 …