早教吧作业答案频道 -->数学-->
双曲线1,已知双曲线x^2-y^2/2=1的焦点为F1、F2,点M在曲线上且MF1*MF2=0求点M到x轴的距离2,在面积为1的△PMN中,tan∠PMN=1/2.tan∠MNP=-2,建立适当坐标系,求以M、N为焦点且过点P的双曲线方程
题目详情
双曲线
1,已知双曲线x^2-y^2/2=1的焦点为F1、F2,点M在曲线上且MF1*MF2=0求点M到x轴的距离
2,在面积为1的△PMN中,tan∠PMN=1/2.tan∠MNP=-2,建立适当坐标系,求以M、N为焦点且过点P的双曲线方程
1,已知双曲线x^2-y^2/2=1的焦点为F1、F2,点M在曲线上且MF1*MF2=0求点M到x轴的距离
2,在面积为1的△PMN中,tan∠PMN=1/2.tan∠MNP=-2,建立适当坐标系,求以M、N为焦点且过点P的双曲线方程
▼优质解答
答案和解析
1、设M至X轴距离为h,向量MF1*MF2=0,|MF2|,|MF1|-|MF2|=2a=2,
根据勾股定理,MF2^2+(MF2+2)^2=(2√3)^2,
设|MF2|=x,x^2+(x+2)^2=12,x=√5-1,
|MF2|=√5-1,|MF1|=√5+1,
|MF1|*|MF2|=|F1F2|*h,
h=2√3/3.
2、tan∠PMN=1/2
tan∠MNP=-2,作PQ⊥MN,
PQ/NQ=tanPQ/MQ=tan设|MN|=m, NQ=m/3,|PQ|=2m/3,
根据勾股定理,
|PM|=2√5/3m,|PN|=m√5/3,
2a=|PM|-|PN|=m√5/3,
a=m√5/6,
c=|MN|/2=m/2,
S△PMN=|PQ|*|MN|/2=(2m/3)*m/2=m^2/3=1,
m=√3,
a=√15/6,
c=√3/2,
b^2=c^2-a^2=1/3,
双曲线方程为:x^2/(5/12)-y^2/(1/3)=1,
12x^2/5-3y^2=1.
根据勾股定理,MF2^2+(MF2+2)^2=(2√3)^2,
设|MF2|=x,x^2+(x+2)^2=12,x=√5-1,
|MF2|=√5-1,|MF1|=√5+1,
|MF1|*|MF2|=|F1F2|*h,
h=2√3/3.
2、tan∠PMN=1/2
tan∠MNP=-2,
PQ/NQ=tan
根据勾股定理,
|PM|=2√5/3m,|PN|=m√5/3,
2a=|PM|-|PN|=m√5/3,
a=m√5/6,
c=|MN|/2=m/2,
S△PMN=|PQ|*|MN|/2=(2m/3)*m/2=m^2/3=1,
m=√3,
a=√15/6,
c=√3/2,
b^2=c^2-a^2=1/3,
双曲线方程为:x^2/(5/12)-y^2/(1/3)=1,
12x^2/5-3y^2=1.
看了 双曲线1,已知双曲线x^2-...的网友还看了以下:
初一二元一次方程难题,已知(m+1)x^|n|+(n-1)y^|m|=1是关于x、y的二元一次方程 2020-04-27 …
已知m,n满足m^2--3m=1,n^2--3n=1 求n/m+m/n 2020-05-16 …
已知M=2m+n-3根号m+3是m+3的算术平方根,N=n+2根号n-2是n-2的立方根,求(n- 2020-05-16 …
已知m、n分别为单项式3x^2y/2的系数和次数(1)求n/m的值(2)若线段AB=6cm,P是线 2020-05-17 …
等你来回答3+2m+n小于0m+n+1大于0求n-m的取值范围.其中n.m匀属于R 2020-05-21 …
求解道二元指数方程10*1.08^n*1.2^m=4982789.346求n,m(它们为整数).可 2020-07-19 …
如图,在平面直角坐标系中xOy中,已知点A(1,m+1),B(a,m+1),C(3,m+3),D( 2020-07-22 …
1、有一组数2,7,12,17.那么第n个数为2、已知|m+n|=-(1-xy)2,其中m不为0,求 2020-11-21 …
(根据2013年高考冲刺卷改编)函数,其中(1)当m=n+6时,函数f(x)有两个极值点.求n的取值 2020-12-08 …
已知实数m,n满足m^2-4m+2=0,n^2-4n+2=0,求n/m+m/n的值?让我发现谁答案是 2020-12-23 …