早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,我们知道,圆环也可看作线段AB绕圆心O旋转一周所形成的平面图形,又圆环的面积S=π(R2-r2)=(R-r)×2π×R+r2.所以,圆环的面积等于是以线段AB=R-r为宽,以AB中点绕圆心O旋转一周所

题目详情
如图,我们知道,圆环也可看作线段AB绕圆心O旋转一周所形成的平面图形,又圆环的面积S=π(R2-r2)=(R-r)×2π×
R+r
2
.所以,圆环的面积等于是以线段AB=R-r为宽,以AB中点绕圆心O旋转一周所形成的圆的周长2π×
R+r
2
为长的矩形面积.请将上述想法拓展到空间,并解决下列问题:若将平面区域M={(x,y)|(x-d)2+y2≤r2}(其中0<r<d)绕y轴旋转一周,则所形成的旋转体的体积是______.(结果用d,r表示)
▼优质解答
答案和解析
由已知中圆环的面积等于是以线段AB=R-r为宽,
以AB中点绕圆心O旋转一周所形成的圆的周长2π×
R+r
2
为长的矩形面积.
拓展到空间后,将平面区域M={(x,y)|(x-d)2+y2≤r2}(其中0<r<d)绕y轴旋转一周,
则所形成的旋转体的体积应等于:
以圆(x-d)2+y2=r2为底面,以圆心(d,0)绕y轴旋转一周形成的圆的周长2π×d为高的圆柱的体积.
故V=πr2•2πd=2π2r2d,
故答案为:2π2r2d.