早教吧作业答案频道 -->数学-->
已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的右焦点F(3,0),过点F的直线交椭圆E于A,B两点.若AB的中点坐标.已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的右焦点F(3,0),过点F的直线交椭圆E于A,B两点.若AB的中点坐标为
题目详情
已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的右焦点F(3,0),过点F的直线交椭圆E于A,B两点.若AB的中点坐标.
已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的右焦点F(3,0),过点F的直线交椭圆E于A,B两点.若AB的中点坐标为(1,-1),则E的方程为?
解题为什么要设2个椭圆方程?
已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的右焦点F(3,0),过点F的直线交椭圆E于A,B两点.若AB的中点坐标为(1,-1),则E的方程为?
解题为什么要设2个椭圆方程?
▼优质解答
答案和解析
题目是这个吧:
已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的右焦点F(3,0),过点F的直线交椭圆E于A,B两点.若AB的中点坐标为(1,-1),则E的方程为?
x1²/a²+y1²/b²=1
x2²/a²+y2²/b²=1
两式相减得;
(x1+x2)(x1-x2)/a²+(y1+y2)(y1-y2)/b²=0
由中点公式得:
{x1+x2=2
{y1+y2= -2
代入上式得:
(x1-x2)/a²-(y1-y2)/b²=0
k=(y1-y2)/(x1-x2)=b²/a²
又因为
k=(0+1)/(3-1)=1/2
a²=2b²
而c=3
2b²=a²=b²+3²
b²=3²=9
a²=18
E:x²/18+y²/9=1
打字不易,如满意,望采纳.
已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的右焦点F(3,0),过点F的直线交椭圆E于A,B两点.若AB的中点坐标为(1,-1),则E的方程为?
x1²/a²+y1²/b²=1
x2²/a²+y2²/b²=1
两式相减得;
(x1+x2)(x1-x2)/a²+(y1+y2)(y1-y2)/b²=0
由中点公式得:
{x1+x2=2
{y1+y2= -2
代入上式得:
(x1-x2)/a²-(y1-y2)/b²=0
k=(y1-y2)/(x1-x2)=b²/a²
又因为
k=(0+1)/(3-1)=1/2
a²=2b²
而c=3
2b²=a²=b²+3²
b²=3²=9
a²=18
E:x²/18+y²/9=1
打字不易,如满意,望采纳.
看了 已知椭圆E:x^2/a^2+...的网友还看了以下:
先化简,再求值 (1)[(x-y)的平方+(x+y)(x-y)]÷2x 其中X=2010,y=20 2020-05-16 …
已知3f(x)+2f(x)=x,求f(x)怎么算我自己算了一半因为3f(x)+2f(x)=x3f( 2020-06-03 …
用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R,设f(x)=[x]•{x}.用[ 2020-06-04 …
设f(x)=ln10x,g(x)=x,h(x)=ex10,则当x充分大时有()A.g(x)<h(x 2020-06-18 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
若函数f(x),g(x)的定义域都是R,则f(x)>g(x)(x∈R)的充要条件是?A.存在一个属 2020-08-02 …
求ln[(1+X)/(1-X)]的导数求ln[(1+X)/(1-X)]导数的思路和答案我知道lnx的 2020-10-31 …
我快死了……函数的一般表达式是什么?是不是y=f(x)(x∈A)?f是某个对应关系,那么这个f(x) 2020-11-01 …
已知x∈R,符号[x]表示不超过x的最大整数,若函数f(x)=[x]x?a(x>0)有且仅有3个零点 2020-11-08 …
我们学习过|x+1|+|x-5|的最小值和|x-1|+|x-4|+|x-8|的最小值,请试试看下面的 2020-11-24 …