早教吧作业答案频道 -->其他-->
问:已知函数fx=e∧x-ax(a为常数)的图像与y轴交于点A,曲线y=fx在点A处的切线斜率为-11,求a的值及函数fx的极值2,证明当x>0时,x∧2<e∧x3,证明对任意给定的正数c,总存在x0,使得当x∈(x0,
题目详情
问: 已知函数fx=e∧x-ax(a为常数)的图像与y轴交于点A,曲线y=fx在点A处的切线斜率为-1
1,求a的值及函数fx的极值
2,证明 当x>0时,x∧2<e∧x
3,证明 对任意给定的正数c,总存在x0,使得当x∈(x0,正无穷)时,恒有x∧2<ce∧x
第三问怎么做,要用到第二问的。
1,求a的值及函数fx的极值
2,证明 当x>0时,x∧2<e∧x
3,证明 对任意给定的正数c,总存在x0,使得当x∈(x0,正无穷)时,恒有x∧2<ce∧x
第三问怎么做,要用到第二问的。
▼优质解答
答案和解析
f(x)=e^x-ax的图像与y轴交于A(0,1),
f'(x)=e^x-a,
1.f'(0)=1-a=-1,a=2,
由f'(x)=0得x=ln2,
f(x)的极小值=f(ln2)=2-2ln2.
2.设g(x)=e^x-x^2(x>0),则
g'(x)=e^x-2x=f(x)>0,
∴g(x)是增函数,g(x)>g(0)=1>0,
∴x>0时x^2 3.设h(x)=ce^x-x^2(c>0)的零点x1为正数,取x0=max{2,x1},则x>x0时x0^2>2x0,
h'(x)=ce^x-2x>0,
h(x)是增函数,
∴h(x)>h(x0)>=0,
∴x^2
f'(x)=e^x-a,
1.f'(0)=1-a=-1,a=2,
由f'(x)=0得x=ln2,
f(x)的极小值=f(ln2)=2-2ln2.
2.设g(x)=e^x-x^2(x>0),则
g'(x)=e^x-2x=f(x)>0,
∴g(x)是增函数,g(x)>g(0)=1>0,
∴x>0时x^2
h'(x)=ce^x-2x>0,
h(x)是增函数,
∴h(x)>h(x0)>=0,
∴x^2
作业帮用户
2017-07-06
看了 问:已知函数fx=e∧x-a...的网友还看了以下:
(2013•奉贤区二模)位于A处的雷达观测站,发现其北偏东45°,与A相距202海里的B处有一货船 2020-04-07 …
若曲线f(x)=x3-2ax2+2ax上任意一点处的切线的倾斜角都是锐角,则实数a的取值范围是0< 2020-04-11 …
已知a>0,函数f(x)=1−axx,x∈({0,+∞}),设0<x1<2a,记曲线y=f(x)在 2020-05-17 …
已知函数f(x)=ex-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为 2020-06-12 …
问:已知函数fx=e∧x-ax(a为常数)的图像与y轴交于点A,曲线y=fx在点A处的切线斜率为- 2020-06-23 …
李杨在交警中心查询5号路与4号路交叉处的机动车闯红灯绿的情况,列成如下表:时间(小时)6≤x<88 2020-06-23 …
读火山构造示意图,完成:(1)写出图中字母所代表的火山构造名称:A.,B.,C.。(2)火山喷发是 2020-06-27 …
设函数y=f(x)具有二阶导数,且f′(x)>0,f″(x)>0,△x为自变量x在点x0处的增量, 2020-07-09 …
设y=y(x)是区间(-π,π)内过(-π2,π2)的光滑曲线,当-π<x<0时,曲线上任一点处的 2020-07-26 …
(2013•泉州)把密度为0.6×103kg/m3、重为12N的木块放入水中,当它静止时所处的状态及 2020-11-12 …