早教吧作业答案频道 -->其他-->
已知函数f(x)=ex-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.(Ⅰ)求a的值及函数f(x)的极值(Ⅱ)证明:当x>0时,x2<ex.(Ⅲ)证明:对任意给定的正数c
题目详情
已知函数f(x)=ex-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.
(Ⅰ)求a的值及函数f(x)的极值
(Ⅱ)证明:当x>0时,x2<ex.
(Ⅲ)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞),恒有x2<cex.
(Ⅰ)求a的值及函数f(x)的极值
(Ⅱ)证明:当x>0时,x2<ex.
(Ⅲ)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞),恒有x2<cex.
▼优质解答
答案和解析
(Ⅰ)由f(x)=ex-ax得f′(x)=ex-a.
又f′(0)=1-a=-1,∴a=2,
∴f(x)=ex-2x,f′(x)=ex-2.
由f′(x)=0得x=ln2,
当x<ln2时,f′(x)<0,f(x)单调递减;
当x>ln2时,f′(x)>0,f(x)单调递增;
∴当x=ln2时,f(x)有极小值为f(ln2)=eln2-2ln2=2-ln4.
f(x)无极大值.
(Ⅱ)令g(x)=ex-x2,则g′(x)=ex-2x,
由(1)得,g′(x)=f(x)≥f(ln2)=eln2-2ln2=2-ln4>0,即g′(x)>0,
∴当x>0时,g(x)>g(0)>0,即x2<ex;
( III)对任意给定的正数c,取x0=
>0,
由( II)知,当x>0时,ex>x2,
∴ex=e
•e
>(
)2•(
)2,
当x>x0时,ex=e
•e
>(
)2•(
)2>
•(
)2=
,
因此,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x2<cex.
又f′(0)=1-a=-1,∴a=2,
∴f(x)=ex-2x,f′(x)=ex-2.
由f′(x)=0得x=ln2,
当x<ln2时,f′(x)<0,f(x)单调递减;
当x>ln2时,f′(x)>0,f(x)单调递增;
∴当x=ln2时,f(x)有极小值为f(ln2)=eln2-2ln2=2-ln4.
f(x)无极大值.
(Ⅱ)令g(x)=ex-x2,则g′(x)=ex-2x,
由(1)得,g′(x)=f(x)≥f(ln2)=eln2-2ln2=2-ln4>0,即g′(x)>0,
∴当x>0时,g(x)>g(0)>0,即x2<ex;
( III)对任意给定的正数c,取x0=
4 | ||
|
由( II)知,当x>0时,ex>x2,
∴ex=e
x |
2 |
x |
2 |
x |
2 |
x |
2 |
当x>x0时,ex=e
x |
2 |
x |
2 |
x |
2 |
x |
2 |
4 |
c |
x |
2 |
x2 |
c |
因此,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x2<cex.
看了 已知函数f(x)=ex-ax...的网友还看了以下:
设F(x)是f(x)的原函数,且当x>=0时,f(x)F(x)=x(e)^x/2(1+x)^2.已 2020-06-12 …
如图,正方形ABCD中,点E从点A出发沿着线段AD向点D运动(点E不与点A、点D重合),同时,点F 2020-07-15 …
一带负点金属球,体积大小不能忽略,其附近某点的电场强度为E.若在该点放一带正点的点电荷q,且测得q 2020-07-20 …
高2数学直线与直线的位置关系?在立方体abcd-a‘b’c’d‘中,E,F分别是棱aa’.bb‘的 2020-07-21 …
1.若f(x)=x^3-px^2+2m^2-m=1的单调减去间为(-2,0),则p的值的集合为多少 2020-08-02 …
已知△ABC的面积为1,D,E分别是AB,AC边上的点,CD,BE交于F点,过点F作FM‖AB,FN 2020-11-03 …
如图,已知△ABC中,AB=AC,D是BC的中点,过D点作DE⊥AC,DF⊥AC,垂足分别为E,F, 2020-11-03 …
如图,在正方形ABCD中,G是BC上的任意一点(G与B,C两点不重合),E,F是AG上的两点(E,F 2021-01-11 …
如图是“某海陆分布示意图”,根据图中提供的信息,完成下列问题:(1)若图中F点常年受西风控制,则该点 2021-01-12 …
若图中F点常年盛行西风,则该点可能位于()A.北美州、亚州B.大洋州、南美洲C.欧洲、非洲D.欧洲、 2021-01-12 …