早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)=ex-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.(Ⅰ)求a的值及函数f(x)的极值(Ⅱ)证明:当x>0时,x2<ex.(Ⅲ)证明:对任意给定的正数c

题目详情
已知函数f(x)=ex-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.
(Ⅰ)求a的值及函数f(x)的极值
(Ⅱ)证明:当x>0时,x2<ex
(Ⅲ)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞),恒有x2<cex
▼优质解答
答案和解析
(Ⅰ)由f(x)=ex-ax得f′(x)=ex-a.
又f′(0)=1-a=-1,∴a=2,
∴f(x)=ex-2x,f′(x)=ex-2.
由f′(x)=0得x=ln2,
当x<ln2时,f′(x)<0,f(x)单调递减;
当x>ln2时,f′(x)>0,f(x)单调递增;
∴当x=ln2时,f(x)有极小值为f(ln2)=eln2-2ln2=2-ln4.
f(x)无极大值.
(Ⅱ)令g(x)=ex-x2,则g′(x)=ex-2x,
由(1)得,g′(x)=f(x)≥f(ln2)=eln2-2ln2=2-ln4>0,即g′(x)>0,
∴当x>0时,g(x)>g(0)>0,即x2<ex
( III)对任意给定的正数c,取x0=
4
c
>0,
由( II)知,当x>0时,ex>x2
ex=e
x
2
•e
x
2
>(
x
2
)2•(
x
2
)2,
当x>x0时,ex=e
x
2
•e
x
2
>(
x
2
)2•(
x
2
)2
4
c
•(
x
2
)2=
x2
c

因此,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x2<cex