早教吧作业答案频道 -->数学-->
如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交BC于G.(1)求证:BG=DE;(2)若点G为CD的中点,求HGGF的值.
题目详情
如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交BC于G.

(1)求证:BG=DE;
(2)若点G为CD的中点,求
的值.

(1)求证:BG=DE;
(2)若点G为CD的中点,求
HG |
GF |
▼优质解答
答案和解析
(1)∵BF⊥DE,
∴∠GFD=90°,
∵∠BCG=90°,∠BGC=∠DGF,
∴∠CBG=∠CDE,
在△BCG与△DCE中,
∴△BCG≌△DCE(ASA),
∴BG=DE,
(2)设CG=1,
∵G为CD的中点,
∴GD=CG=1,
由(1)可知:△BCG≌△DCE(ASA),
∴CG=CE=1,
∴由勾股定理可知:DE=BG=
,
∵sin∠CDE=
=
,
∴GF=
,
∵AB∥CG,
∴△ABH∽△CGH,
∴
=
=
,
∴BH=
,GH=
,
∴
=
∴∠GFD=90°,
∵∠BCG=90°,∠BGC=∠DGF,
∴∠CBG=∠CDE,
在△BCG与△DCE中,
|
∴△BCG≌△DCE(ASA),
∴BG=DE,
(2)设CG=1,
∵G为CD的中点,
∴GD=CG=1,
由(1)可知:△BCG≌△DCE(ASA),
∴CG=CE=1,
∴由勾股定理可知:DE=BG=
5 |
∵sin∠CDE=
CE |
DE |
GF |
GD |
∴GF=
| ||
5 |
∵AB∥CG,
∴△ABH∽△CGH,
∴
AB |
CG |
BH |
GH |
2 |
1 |
∴BH=
2 |
3 |
5 |
1 |
3 |
5 |
∴
HG |
GF |
5 |
3 |
看了 如图,点E是正方形ABCD的...的网友还看了以下:
AB为圆O的直径点C为圆O上一点AD和过点C的切线互相垂直垂足为点D过点C作CE垂直AB垂足为点E直 2020-03-30 …
1.如图,在三角形ABC中,AB=AC,D为BC上一点,DE垂直AB于点E,DF垂直于点F,BG垂直 2020-03-31 …
已知M是抛物线C:x^2=4y上的动点,过M作y轴的垂线MN,垂足为N,记线段MN的中点为E.(1 2020-04-13 …
已知M是抛物线C:x^2=4y上的动点,过M作y轴的垂线MN,垂足为N,记线段MN的中点为E.(1 2020-04-13 …
D是线段AB的中点,C是线段AB的中垂线上一点,DE垂直AC于E,DF垂直BC于F.点C运动到什么 2020-04-27 …
已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1= 2020-05-16 …
如图,在平行四边形ABCD中,AB=8,tanB=2,CE垂直AB,垂足为E(点E在边AB上),F 2020-05-16 …
三角形ABC中,AD垂直于BC,垂足为点D(D在BC边上),BE垂直于AC,垂足为点E,M为AB边 2020-06-03 …
已知:AB垂直于BD,CD垂直于BD,垂足分别为B和D,AD和BC相交于点E,EF垂直于BD,垂足 2020-06-05 …
如图,在三角形ABC中,角C等于2角B,D是BC上的一点,且AD垂直AB,点E是BD的中点,连接E 2020-06-27 …