早教吧作业答案频道 -->数学-->
设A为n阶方阵,E为n阶单位矩阵,证明R(A+E)+R(A-E)》n,
题目详情
设A为n阶方阵,E为n阶单位矩阵,证明R(A+E)+R(A-E)》n,
▼优质解答
答案和解析
证明:
设A,B为同阶方阵,a1,a2...ar是A的极大线性无关向量组,则:
R(A)=r,同理,设b1,b2,..bs为B的极大线性无关向量组,则:
R(B)=s
而A+B与A和B为同阶方阵,其极大线性无关组不可能大于r+s,即:
R(A)+R(B) ≥R(A+B)
根据上述,可以知道:
R(A+E)+R(A-E) = R(A+E) + R(E-A) ≥ R[(A+E)+(E-A)] = R(2E) = n
设A,B为同阶方阵,a1,a2...ar是A的极大线性无关向量组,则:
R(A)=r,同理,设b1,b2,..bs为B的极大线性无关向量组,则:
R(B)=s
而A+B与A和B为同阶方阵,其极大线性无关组不可能大于r+s,即:
R(A)+R(B) ≥R(A+B)
根据上述,可以知道:
R(A+E)+R(A-E) = R(A+E) + R(E-A) ≥ R[(A+E)+(E-A)] = R(2E) = n
看了 设A为n阶方阵,E为n阶单位...的网友还看了以下:
A是n阶矩阵,A^2=E,证A可对角化 2020-04-05 …
设矩阵A满足A^2=E.证明:A+2E是可逆矩阵. 2020-04-05 …
设A是n阶矩阵A^2=E,证明r(A+E)+r(A-E)=n,的一步证明过程不懂由A^2=E,得A 2020-05-14 …
正交矩阵是否能证明对称,有一题如下 对于任意正交矩阵A,AAT=ATA=E,证明|E-A^2|=0 2020-05-15 …
设A为n阶方阵,E为N阶单位矩阵,且A^2-A=2E,证明则r(2E-A)+r(E+A)=n设A为 2020-05-15 …
大家看看我这个矩阵的证明哪里有问题已知A,B为n阶方阵,且B=B^2,A=B+E,证明A可逆,并求 2020-06-09 …
是不是对于所有n×n的矩阵A,都可以有A^k的幂运算呢,那怎么保证A^(k-1)·A=A·A^(k 2020-06-10 …
设A,B是N阶对称阵,且AB+E及A都可逆,证明(AB+E)^(-1)A是可逆的对称阵关于对称阵的 2020-06-18 …
设群G中每个元素都满足a^2=e,证明G是交换群 2020-07-06 …
矩阵可逆的证明您好,设矩阵A满足A∧2=E,证明3E-A可逆. 2020-11-03 …