早教吧作业答案频道 -->数学-->
高等数学综合题:已知函数f(x)在区间[a,b]上连续,且f(x)>0,设函数F(x)=∫[a→x]f(t)dt+∫[b→x]1/f(t)dt,x∈[a,b].(1)证明F’(x)≥2(2)证明方程F(x)=0在区间(a,b)内有且仅有一个根.
题目详情
高等数学综合题:
已知函数f(x)在区间[a,b]上连续,且f(x)>0,设函数
F(x)=∫[a→x]f(t)dt+∫[b→x] 1/f(t) dt ,x∈[a,b] .
(1)证明F’(x)≥2
(2)证明方程F(x)=0在区间(a,b)内有且仅有一个根.
已知函数f(x)在区间[a,b]上连续,且f(x)>0,设函数
F(x)=∫[a→x]f(t)dt+∫[b→x] 1/f(t) dt ,x∈[a,b] .
(1)证明F’(x)≥2
(2)证明方程F(x)=0在区间(a,b)内有且仅有一个根.
▼优质解答
答案和解析
F’(x)=f(t)+1/f(t),f(x)>0,用高中学的均值不等式,F’(x)≥2
至于这个导数怎么求的,可以利用积分的可加性就可以变成最原始的积分上限函数减去两个定积分,定积分是常数,求导得0,所以积分上限函数不管下限是几,求导都是里面的那个东西
第二题,函数单调,f(a)=-∫[a→b] 1/f(t) dt 小于0,f(b)>0,所以由中值定理,有且只有一个根
至于这个导数怎么求的,可以利用积分的可加性就可以变成最原始的积分上限函数减去两个定积分,定积分是常数,求导得0,所以积分上限函数不管下限是几,求导都是里面的那个东西
第二题,函数单调,f(a)=-∫[a→b] 1/f(t) dt 小于0,f(b)>0,所以由中值定理,有且只有一个根
看了 高等数学综合题:已知函数f(...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
如何证明矩阵a符合这个特征方程p(a)2.这个矩阵的三个特征方程分别是什么3如何用A和A如何证明矩 2020-04-26 …
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
如图4所示,一定质量的理想气体,从状态A经绝热过程A→B,等容过程B→C,等温过程C→A,又回到了 2020-05-14 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
这三个方程①(a²+a+1)x²-a=0②根号下x+1=x-1③x-3=1/3哪些是一元二次方程? 2020-06-03 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
我问过这样一道题:设a.b为有理数,且|a|>0,方程||X-a|-b|=3有三个不相等的解,求b 2020-08-02 …
已知关于x的方程(a-a)x+ax+a-1=0(1)当a为何值时,方程是一元一次方程;(2)当a为何 2020-12-03 …
递回关系式的运算公式(数列)以下是推导一个公式"a=a+r(1-p^n)/(1-p)"的过程a=p* 2021-01-13 …