早教吧作业答案频道 -->数学-->
设f(x)在(a,b)内二阶可导,且f(x1)=f(x2)=f(x3),而a<x1<x设f(x)在(a,b)内二阶可导,且f(x1)=f(x2)=f(x3),而a<x1<x2<x3<b,证明在(x1,x3)内至少存在一点§,使f’’(§)=0
题目详情
设f(x)在(a,b)内二阶可导,且f(x1)=f(x2)=f(x3),而a<x1<x
设f(x)在(a,b)内二阶可导,且f(x1)=f(x2)=f(x3),而a<x1<x2<x3<b,证明在(x1,x3)内至少存在一点§,使f’’(§)=0
设f(x)在(a,b)内二阶可导,且f(x1)=f(x2)=f(x3),而a<x1<x2<x3<b,证明在(x1,x3)内至少存在一点§,使f’’(§)=0
▼优质解答
答案和解析
∵f(x)的二阶导数存在
∴f(x)的一阶导数存在
∴f(x)连续
∵f(x)在〔x1、x2〕上连续,在(x1,x2)内可导,f(x1)=f(x2)
∴由罗尔定理得:至少存在一个c1属于(x1,x2),使得f‘(c1)=0
同理,f(x)在[x2,x3]上连续,在(x2,x3)内可导,f(x2)=f(x3)
∴由罗尔定理得:至少存在一个c2属于(x2,x3),使得f’(c2)=0
又∵f'(x)在〔c1,c2〕上连续,在(c1,c2)内可导,f'(c1)=f'(c2)
∴由罗尔定理得:至少存在一个ε属于(c1,c2),使得f''(ε)=0
而(c1,c2)包含于(a,b)
∴f(x)的一阶导数存在
∴f(x)连续
∵f(x)在〔x1、x2〕上连续,在(x1,x2)内可导,f(x1)=f(x2)
∴由罗尔定理得:至少存在一个c1属于(x1,x2),使得f‘(c1)=0
同理,f(x)在[x2,x3]上连续,在(x2,x3)内可导,f(x2)=f(x3)
∴由罗尔定理得:至少存在一个c2属于(x2,x3),使得f’(c2)=0
又∵f'(x)在〔c1,c2〕上连续,在(c1,c2)内可导,f'(c1)=f'(c2)
∴由罗尔定理得:至少存在一个ε属于(c1,c2),使得f''(ε)=0
而(c1,c2)包含于(a,b)
看了 设f(x)在(a,b)内二阶...的网友还看了以下:
导数,不等式结合问题.已知函数F(x)=lnx,G(x)=0.5x^2-2x.(1)设h(x)=F 2020-05-14 …
数学高手看过来~~~高手comeon!已知导函数f′(x)的下列信息:当1<x<4时,f′(x)> 2020-06-05 …
函数f(x)的导函数为f′(x),对∀x∈R,都有2f′(x)>f(x)成立,若f(ln4)=2, 2020-06-08 …
设奇函数f(x)定义在(-π,0)∪(0,π)上,其导函数为f′(x),且f(π2)=0,当0<x 2020-06-09 …
设f(x),g(x)是定义域为R的恒大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0 2020-06-10 …
设f(x)在(a,b)内二阶可导,且f(x1)=f(x2)=f(x3),而a<x1<x设f(x)在 2020-06-15 …
设函数f(x)在区间(0,+∞)内具有二阶导数,满足f(0)=0,f″(x)<0,又0<a<b,则 2020-07-21 …
(2011•汕头模拟)已知函数f(x)(x∈R)满足f(1)=1,且f′(x)的导函数f′(x)<1 2020-11-12 …
函数f(x)在x=-1处不一定可导,如f(x)=|x+1|=x+1,x>-10x=-1-x-1,x< 2020-11-20 …
已知f(x)是定义在[a,b]上的函数,其图象是一条连续不断的曲线,且满足下列条件:①f(x)的值域 2021-02-13 …