早教吧作业答案频道 -->数学-->
(2014•十堰)已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(-1,0).下列结论:①a-b+c=0;②b2>4ac;③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=-14a
题目详情
(2014•十堰)已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(-1,0).下列结论:
①a-b+c=0;
②b2>4ac;
③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;
④抛物线的对称轴为x=-
.
其中结论正确的个数有( )
A.4个
B.3个
C.2个
D.1个
①a-b+c=0;
②b2>4ac;
③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;
④抛物线的对称轴为x=-
1 |
4a |
其中结论正确的个数有( )
A.4个
B.3个
C.2个
D.1个
▼优质解答
答案和解析
①∵抛物线y=ax2+bx+c(a≠0)经过点(-1,0),∴a-b+c=0,故①正确;
②∵抛物线y=ax2+bx+c(a≠0)经过点(1,1),∴a+b+c=1,又a-b+c=0,
两式相加,得2(a+c)=1,a+c=
,
两式相减,得2b=1,b=
.
∵b2-4ac=
-4a(
-a)=
-2a+4a2=(2a-
)2,
当2a-
=0,即a=
时,b2-4ac=0,故②错误;
③当a<0时,∵b2-4ac=(2a-
)2>0,
∴抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,
则-1•x=
=
=
-1,即x=1-
,
∵a<0,∴-
>0,
∴x=1-
>1,
即抛物线与x轴必有一个交点在点(1,0)的右侧,故③正确;
④抛物线的对称轴为x=-
=-
=-
,故④正确.
故选:B.
②∵抛物线y=ax2+bx+c(a≠0)经过点(1,1),∴a+b+c=1,又a-b+c=0,
两式相加,得2(a+c)=1,a+c=
1 |
2 |
两式相减,得2b=1,b=
1 |
2 |
∵b2-4ac=
1 |
4 |
1 |
2 |
1 |
4 |
1 |
2 |
当2a-
1 |
2 |
1 |
4 |
③当a<0时,∵b2-4ac=(2a-
1 |
2 |
∴抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,
则-1•x=
c |
a |
| ||
a |
1 |
2a |
1 |
2a |
∵a<0,∴-
1 |
2a |
∴x=1-
1 |
2a |
即抛物线与x轴必有一个交点在点(1,0)的右侧,故③正确;
④抛物线的对称轴为x=-
b |
2a |
| ||
2a |
1 |
4a |
故选:B.
看了 (2014•十堰)已知抛物线...的网友还看了以下:
已知梯形的上底a=2㎝,下底b=4㎝,高h=3㎝,利用梯形面积公式求这个梯形面积. 2020-05-13 …
1.先化简,再求值[(a-1/2)²-(a+1/2)²](a+3),其中a=-2 2.若a+b=5 2020-05-16 …
重金求辽宁省专用的高中英语必修3必修4的单词表!重金求辽宁省专用的高中英语必修3必修4的单词表!重 2020-05-16 …
下列事件中,属于必然发生的事件是A.天上打雷,地上下雨B.坐车出游不会发生交通事故C.某学校初一级 2020-06-06 …
语文学完了必修4数学必修5学了一半英语学完了必修4语文学完了必修4数学必修5学了一半英语学完了必修 2020-06-20 …
高中解析几何问题!设A(x1,y1)B(4,9/5)C(x2,y2)是右焦点为F的椭圆x^2/25 2020-07-31 …
数学必修4.如果tan@=m(m不等于0,@表示角度)且sin@=m/根号下m平方+1,那么@所在 2020-08-01 …
已知圆x^2+y^2+2x-4y+1=0关于直线2ax-by+2=0(a>0,b>0)对称,则4/ 2020-08-01 …
已知三角形abc中,a(2,4),b(-1,-2)c(4,3),bc边上的高为ad.求点d与向量ad 2020-11-01 …
高中数学必修4高一数学必修4在以后的学习生活中有多大的用啊???我觉的必修4太无聊了,三角函数,向量 2020-11-23 …