早教吧作业答案频道 -->数学-->
(2014•十堰)已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(-1,0).下列结论:①a-b+c=0;②b2>4ac;③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=-14a
题目详情
(2014•十堰)已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(-1,0).下列结论:
①a-b+c=0;
②b2>4ac;
③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;
④抛物线的对称轴为x=-
.
其中结论正确的个数有( )
A.4个
B.3个
C.2个
D.1个
①a-b+c=0;
②b2>4ac;
③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;
④抛物线的对称轴为x=-
1 |
4a |
其中结论正确的个数有( )
A.4个
B.3个
C.2个
D.1个
▼优质解答
答案和解析
①∵抛物线y=ax2+bx+c(a≠0)经过点(-1,0),∴a-b+c=0,故①正确;
②∵抛物线y=ax2+bx+c(a≠0)经过点(1,1),∴a+b+c=1,又a-b+c=0,
两式相加,得2(a+c)=1,a+c=
,
两式相减,得2b=1,b=
.
∵b2-4ac=
-4a(
-a)=
-2a+4a2=(2a-
)2,
当2a-
=0,即a=
时,b2-4ac=0,故②错误;
③当a<0时,∵b2-4ac=(2a-
)2>0,
∴抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,
则-1•x=
=
=
-1,即x=1-
,
∵a<0,∴-
>0,
∴x=1-
>1,
即抛物线与x轴必有一个交点在点(1,0)的右侧,故③正确;
④抛物线的对称轴为x=-
=-
=-
,故④正确.
故选:B.
②∵抛物线y=ax2+bx+c(a≠0)经过点(1,1),∴a+b+c=1,又a-b+c=0,
两式相加,得2(a+c)=1,a+c=
1 |
2 |
两式相减,得2b=1,b=
1 |
2 |
∵b2-4ac=
1 |
4 |
1 |
2 |
1 |
4 |
1 |
2 |
当2a-
1 |
2 |
1 |
4 |
③当a<0时,∵b2-4ac=(2a-
1 |
2 |
∴抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,
则-1•x=
c |
a |
| ||
a |
1 |
2a |
1 |
2a |
∵a<0,∴-
1 |
2a |
∴x=1-
1 |
2a |
即抛物线与x轴必有一个交点在点(1,0)的右侧,故③正确;
④抛物线的对称轴为x=-
b |
2a |
| ||
2a |
1 |
4a |
故选:B.
看了 (2014•十堰)已知抛物线...的网友还看了以下:
已知二次函数f(x)=4x2-2p(p-2)-2p2-p+1在区间[-1,1]内至少存在一点c,使 2020-05-13 …
已知椭圆C:a²分之x²+b²分之y平方=1(a>b>0)的上顶点为p(0,1),过C的的焦点切垂 2020-05-15 …
曲线C:y^2=x+1和定点A(3,1),B为曲线C上任意点.若AP向量=2倍的PB向量,当点B在 2020-05-16 …
(2013•崇明县一模)设函数fn(x)=xn+bx+c(n∈N*,b,c∈R).(1)当n=2, 2020-05-17 …
设p:指数函数y=c^x在R上是减函数,那p的否定中c的取值范围是(1)c>1,还是(2)c=1设 2020-08-01 …
一道简单的高数题.设函数f(x)在区间〔0,1〕上连续,在(0,1)内可导,f(0)=f(1)=0 2020-08-02 …
1.去极地科学考察的最佳时间应是()A.北极和南极都在7月B.北极和南极都在1月C.北极7月南极1月 2020-11-21 …
设函数f(x)=(1/2)x^2+4lnx+c(1)当c=1时,求函数f(x)在[1,2e]上的最大 2020-12-08 …
已知函数f(x)=ax+b/x+c(a>0)的图像在点,(1,f(1))处的切线方程为y=x-1.( 2020-12-08 …
关于气温的叙述,不正确的是()A.一天中最高气温出现在14时左右B.北半球陆地上一年中最低气温出现在 2020-12-29 …