早教吧作业答案频道 -->数学-->
(2014•成都)如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是AC上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△P
题目详情
(2014•成都)如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是![]() |
| AC |
(1)求证:△PAC∽△PDF;
(2)若AB=5,
![]() |
| AP |
![]() |
| BP |
(3)在点P运动过程中,设
| AG |
| BG |
▼优质解答
答案和解析
(1)证明:∵
=
,
∴∠DPF=180°-∠APD=180°-
所对的圆周角=180°-
所对的圆周角=
所对的圆周角=∠APC.
在△PAC和△PDF中,
,
∴△PAC∽△PDF.
(2)如图1,连接PO,则由
=
,有PO⊥AB,且∠PAB=45°,△APO、△AEF都为等腰直角三角形.

在Rt△ABC中,
∵AC=2BC,
∴AB2=BC2+AC2=5BC2,
∵AB=5,
∴BC=
,
∴AC=2
,
∴CE=AC•sin∠BAC=AC•
=2
•
![]() |
| AC |
![]() |
| AD |
∴∠DPF=180°-∠APD=180°-
![]() |
| AD |
![]() |
| AC |
![]() |
| ADC |
在△PAC和△PDF中,
|
∴△PAC∽△PDF.
(2)如图1,连接PO,则由
![]() |
| AP |
![]() |
| BP |

在Rt△ABC中,
∵AC=2BC,
∴AB2=BC2+AC2=5BC2,
∵AB=5,
∴BC=
| 5 |
∴AC=2
| 5 |
∴CE=AC•sin∠BAC=AC•
| BC |
| AB |
| 5 |
作业搜用户
2017-10-17
看了 (2014•成都)如图,在⊙...的网友还看了以下:
初三化学推断题(空气、氧气这一章)A、B、C都是初三化学常见的物质,反应关系为A.B.C若A、C都 2020-04-11 …
在大肠杆菌中,一个基因型为a+b+c+d+e+Strs的Hfr菌株与一个基因型为a-b-c-d-e 2020-04-26 …
这是一道高三的题 在三角形ABC中 角A B C所对的边分别为a b c A=2B sinB=根号 2020-05-15 …
反应热与释放的热量计算到底有什么区别:假如说一个放热反应中:A+B=C假设每种物质只有一个化学键. 2020-05-17 …
已知等腰三角形三边长为A,B,C,A=C,关于X的一元二次方程ax^2-(根号2)bx+c=0的两 2020-06-08 …
想知道这题的做法已知a,b,c是3个正整数,且a>b>c,若a,b,c的算术平均值为14/3,几何 2020-06-13 …
在△ABC中,角A,B,C的对边分别为a,b,c.若cosA=1/3,b=3c,求sinC的值我记 2020-06-17 …
离子晶体中层A,B,C的代表意义不妨举一例,下为某题的一部分:某晶体阴离子为立方最密堆积,有A,B 2020-06-23 …
在△ABC中,∠A∠B,∠C的对边分别为a,b,c,且aˆ2=(b+c)(b-c),则()A.∠A 2020-07-09 …
已知的三边长分别为a,b,c,其面积为S,则△ABC的内切圆eO的半径r=2S/a+b+c.这是一 2020-08-02 …





