早教吧作业答案频道 -->其他-->
设函数f(x)=exx2-k(2x+lnx)(k为常数,e为自然对数的底数).(1)当k=0时,求函数f(x)的单调区间;(2)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.
题目详情
设函数f(x)=
-k(
+lnx)(k为常数,e为自然对数的底数).
(1)当k=0时,求函数f(x)的单调区间;
(2)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.
ex |
x2 |
2 |
x |
(1)当k=0时,求函数f(x)的单调区间;
(2)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.
▼优质解答
答案和解析
(1)当k=0时,函数f(x)=
(x>0).
f′(x)=
.
令f′(x)>0,解得x>2.令f′(x)<0,解得0<x<2.
∴函数f(x)在(2,+∞)上单调递增;在(0,2)上单调递减.
(2)∵函数f(x)在(0,2)内存在两个极值点,
∴f′(x)=
-k(−
+
)=0有两个实数根.
化为k=
,
∴k=
在(0,2)内存在两个实数根.
设h(x)=
,x∈(0,2).则h′(x)=
.
令h′(x)=0,解得x=1.
令h′(x)>0,解得1<x<2;令h′(x)<0,解得0<x<1.
∴函数h(x)在区间(0,1)上单调递减,在区间(1,2)上单调递增.
∴当x=1时,函数h(x)取得极小值即最小值,h(1)=e.
而h(2)=
,h(0)→+∞.
∴e<k<
.
ex |
x2 |
f′(x)=
x(x−2)ex |
x4 |
令f′(x)>0,解得x>2.令f′(x)<0,解得0<x<2.
∴函数f(x)在(2,+∞)上单调递增;在(0,2)上单调递减.
(2)∵函数f(x)在(0,2)内存在两个极值点,
∴f′(x)=
(x−2)ex |
x3 |
2 |
x2 |
1 |
x |
化为k=
ex |
x |
∴k=
ex |
x |
设h(x)=
ex |
x |
(x−1)ex |
x2 |
令h′(x)=0,解得x=1.
令h′(x)>0,解得1<x<2;令h′(x)<0,解得0<x<1.
∴函数h(x)在区间(0,1)上单调递减,在区间(1,2)上单调递增.
∴当x=1时,函数h(x)取得极小值即最小值,h(1)=e.
而h(2)=
e2 |
2 |
∴e<k<
e2 |
2 |
看了 设函数f(x)=exx2-k...的网友还看了以下:
一道数学归纳法的,我金币不多,对任意正整数,log3n=log2n成立证明:当n=1时,log3^ 2020-05-01 …
设A是数域K上的n级矩阵,证明:A是斜对称矩阵当且仅当对于K^n中任意列向量α有α'Aα=0 2020-06-12 …
设函数f(x)=exx2-k(2x+lnx)(k为常数,e为自然对数的底数).(1)当k=0时,求 2020-06-12 …
已知集合M={(x,y)│x>0,y>0,x+y=k},其中k为正常数.(1)设t=xy,求t的取 2020-07-09 …
(2014•山东)设函数f(x)=exx2-k(2x+lnx)(k为常数,e=2.71828…是自 2020-07-30 …
序列a(k)有界,b(k)=a(k+1)-a(k),当k趋近正无穷时,(k-2)*ln(k+1)* 2020-07-30 …
已知函数f(x)=exx2-k(2x+lnx),若x=2是函数f(x)的唯一一个极值点,则实数k的 2020-07-31 …
一道数学归纳法的,急!大家帮帮忙.我金币不多,感谢大家了.对任意正整数,log3n=log2n成立 2020-08-01 …
设函数f(x)=exx2-k(2x+lnx)(k为常数,e是自然对数的底数).(1)当k≤0时,求 2020-08-02 …
已知一次函数y=(3-k)x+6-k①当k为何值时,其图像经过原点②当k为何值时,y随x增大而减小③ 2020-12-31 …