早教吧作业答案频道 -->其他-->
(2014•清河区一模)如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是.
题目详情
(2014•清河区一模)如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是______.▼优质解答
答案和解析
如图,取AC的中点G,连接EG,
∵旋转角为60°,
∴∠ECD+∠DCF=60°,
又∵∠ECD+∠GCE=∠ACB=60°,
∴∠DCF=∠GCE,
∵AD是等边△ABC的对称轴,
∴CD=
BC,
∴CD=CG,
又∵CE旋转到CF,
∴CE=CF,
在△DCF和△GCE中,
,
∴△DCF≌△GCE(SAS),
∴DF=EG,
根据垂线段最短,EG⊥AD时,EG最短,即DF最短,
此时∵∠CAD=
×60°=30°,AG=
AC=
×6=3,
∴EG=
AG=
×3=1.5,
∴DF=1.5.
故答案为:1.5.
如图,取AC的中点G,连接EG,∵旋转角为60°,
∴∠ECD+∠DCF=60°,
又∵∠ECD+∠GCE=∠ACB=60°,
∴∠DCF=∠GCE,
∵AD是等边△ABC的对称轴,
∴CD=
| 1 |
| 2 |
∴CD=CG,
又∵CE旋转到CF,
∴CE=CF,
在△DCF和△GCE中,
|
∴△DCF≌△GCE(SAS),
∴DF=EG,
根据垂线段最短,EG⊥AD时,EG最短,即DF最短,
此时∵∠CAD=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴EG=
| 1 |
| 2 |
| 1 |
| 2 |
∴DF=1.5.
故答案为:1.5.
看了 (2014•清河区一模)如图...的网友还看了以下:
用中值定理证明:设f(x)在[0,a]上连续,在(0,a)内可导,证明存在一点z属于(0,a),使 2020-05-14 …
设f(x)在0,a上连续,在(0,a)内可导,且f(0)=f(a),求证:存在ζ∈(0,a),使得 2020-05-14 …
设f(x)在闭区间[0,A]上连续,且f(0)=0.如果f'(x)存在且为增函数(0 2020-05-20 …
帮忙做道微积分题吧...大一的...设函数f(x)在[0,a]上连续,在(0,a)内可导,且f(0 2020-06-11 …
设函数f(x)在闭区间[0,A]上连续,且f(0)=0.如果f'(x)存在且为增函数(x属于[0, 2020-06-12 …
问一个积分证明题设f(x)在[0,a]上连续(a>0),证明:∫(0,a)dx∫(0,x)f(x) 2020-06-12 …
请大神来做一道中值证明题f(x)在[0,a]上连续,在(0,a)内可导,且f(a)等于0,证明存在 2020-06-14 …
f(x)在[0,a]上连续在(0,a)内可导且f(0)=0f(x)的导数单调增加求证:f(x)/x 2020-06-15 …
高数证明问题1.设函数f(x)在闭区间[0,A]上连续,且f(0)=0,如果f'(x)存在且为增函 2020-08-01 …
关于微分中值定理F(x)在[0,a]上连续,在(0,a)上可导,f(a)=0.证明存在m属于(0,a 2020-12-12 …