早教吧作业答案频道 -->数学-->
在四边形ABCD中AB=AD,AC于BD交于点E,∠ADB=∠ACB.(1)求证AB/AE=AC/AD(2)若AB⊥AC,AE:EC=1:2(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:ABFD是菱形
题目详情
在四边形ABCD中AB=AD,AC于BD交于点E,∠ADB=∠ACB.(1)求证AB/AE=AC/AD(2)若AB⊥AC,AE:EC=1:2
(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:ABFD是菱形
(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:ABFD是菱形
▼优质解答
答案和解析
证明:(1)∵AB=AD,
∴∠ADB=∠ABE,
又∵∠ADB=∠ACB,
∴∠ABE=∠ACB,
又∵∠BAE=∠CAB,
∴△ABE∽△ACB,
∴AB/AE=AC/AB,
又∵AB=AD,
∴AB /AE =AC /AD ;
(2)设AE=x,
∵AE:EC=1:2,
∴EC=2x,
由(1)得:AB2=AE•AC,
∴AB= (根号3) x,
又∵BA⊥AC,
∴BC=(2根号3 )x,
∴∠ACB=30°,
∵F是BC中点,
∴BF=(根号3) x,
∴BF=AB=AD,
又∵∠ADB=∠ACB=∠ABD,
∴∠ADB=∠CBD=30°,
∴AD∥BF,
∴四边形ABFD是平行四边形,
又∵AD=AB,
∴四边形ABFD是菱形.
∴∠ADB=∠ABE,
又∵∠ADB=∠ACB,
∴∠ABE=∠ACB,
又∵∠BAE=∠CAB,
∴△ABE∽△ACB,
∴AB/AE=AC/AB,
又∵AB=AD,
∴AB /AE =AC /AD ;
(2)设AE=x,
∵AE:EC=1:2,
∴EC=2x,
由(1)得:AB2=AE•AC,
∴AB= (根号3) x,
又∵BA⊥AC,
∴BC=(2根号3 )x,
∴∠ACB=30°,
∵F是BC中点,
∴BF=(根号3) x,
∴BF=AB=AD,
又∵∠ADB=∠ACB=∠ABD,
∴∠ADB=∠CBD=30°,
∴AD∥BF,
∴四边形ABFD是平行四边形,
又∵AD=AB,
∴四边形ABFD是菱形.
看了 在四边形ABCD中AB=AD...的网友还看了以下:
如图,在平面直角坐标系xoy中,抛物线y=x2+bx+c与x轴交于a、b两点(点a在点b的左侧), 2020-05-16 …
在平面直角坐标系x0y中,抛物线y=x2+bx+c与X轴交于A、B两点(点A在点B的左侧)与Y轴交 2020-05-16 …
已知集合A={第一象限角},B={锐角},C={小于90°的角},则下列关系中正确的是:A、A=B 2020-05-16 …
在一个三角形中,∠A=2∠C,∠B=3∠C,求∠A、∠B、∠C的度数.在一个三角形中,∠A=2∠C 2020-05-23 …
已知有理数a.b.c.在数轴上的位置如图所示,|a|=|b|1.a+b与a/b的值;2.c-a/c 2020-06-03 …
如图1,草原上有A,B,C三个互通公路的奶牛养殖基地,B与C之间距离为100千米,C在B的正北方, 2020-06-17 …
如图所示,为了测量A,B处岛屿的距离,小明在D处观测,A,B分别在D处的北偏西15°、北偏东45° 2020-06-20 …
如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上 2020-07-02 …
如图,“中海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛瞧C上的 2020-07-02 …
如图所示,在一光滑的水平面上有两块相同的木板B和C.重物A(视为质点)位于B的右端,A、B、C的质 2020-07-07 …