早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设函数f(x)=xea-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4,(Ⅰ)求a,b的值;(Ⅱ)求f(x)的单调区间.

题目详情
设函数f(x)=xea-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4,
(Ⅰ)求a,b的值;
(Ⅱ)求f(x)的单调区间.
▼优质解答
答案和解析
(Ⅰ)∵y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4,
∴当x=2时,y=2(e-1)+4=2e+2,即f(2)=2e+2,
同时f′(2)=e-1,
∵f(x)=xea-x+bx,
∴f′(x)=ea-x-xea-x+b,
f(2)=2ea-2+2b=2e+2
f′(2)=ea-2-2ea-2+b=e-1

即a=2,b=e;
(Ⅱ)∵a=2,b=e;
∴f(x)=xe2-x+ex,
∴f′(x)=e2-x-xe2-x+e=(1-x)e2-x+e,
f″(x)=-e2-x-(1-x)e2-x=(x-2)e2-x
由f″(x)>0得x>2,由f″(x)<0得x<2,
即当x=2时,f′(x)取得极小值f′(2)=(1-2)e2-2+e=e-1>0,
∴f′(x)>0恒成立,
即函数f(x)是增函数,
即f(x)的单调区间是(-∞,+∞).