早教吧作业答案频道 -->数学-->
高数题目设f(x)在[a,b]上可导,又f'(x)+[f(x)]^2-∫(a到x)f(t)dt=0,且∫(a到b)f(t)dt=0,则∫(a到x)f(t)dt在(a,b)内为什么恒为0.该题解答中令F(x)=∫(a到x)f(t)dt,则F(a)=F(b)=0,所给条件变为F''(x)+[F'(x)]^2-F(x)=0若F(x)在(
题目详情
高数题目
设f(x)在[a,b]上可导,又f'(x)+[f(x)]^2-∫(a到x)f(t)dt=0,且∫(a到b)f(t)dt=0,则∫(a到x)f(t)dt在(a,b)内为什么恒为0.
该题解答中令F(x)=∫(a到x)f(t)dt,则F(a)=F(b)=0,所给条件变为F''(x)+[F'(x)]^2-F(x)=0
若F(x)在(a,b)不恒为0,则F(x)在(a,b)取正的最大值或负的最小值.设F(m)=maxF(x)>0,则m∈(a,b),F'(m)=0,F''(m)≤0
这里为什么F''(m)≤0?
设f(x)在[a,b]上可导,又f'(x)+[f(x)]^2-∫(a到x)f(t)dt=0,且∫(a到b)f(t)dt=0,则∫(a到x)f(t)dt在(a,b)内为什么恒为0.
该题解答中令F(x)=∫(a到x)f(t)dt,则F(a)=F(b)=0,所给条件变为F''(x)+[F'(x)]^2-F(x)=0
若F(x)在(a,b)不恒为0,则F(x)在(a,b)取正的最大值或负的最小值.设F(m)=maxF(x)>0,则m∈(a,b),F'(m)=0,F''(m)≤0
这里为什么F''(m)≤0?
▼优质解答
答案和解析
因为F(x)在m处取得正的最大值,则在m处的小邻域内,函数图象是向上的凹函数的形状,所以F''(m)≤0
看了 高数题目设f(x)在[a,b...的网友还看了以下:
对某式两边取积分是不是这么理解的(不懂装懂的同学请绕道啊别害人啊)比如对i(t)=Cdv(t)/d 2020-05-13 …
线代小题齐次线性方程组Ax=0的解空间的一组基为(1,-1,1,0,0)T;(1,1,0,1,0) 2020-05-14 …
高数题目设f(x)在[a,b]上可导,又f'(x)+[f(x)]^2-∫(a到x)f(t)dt=0 2020-06-12 …
已知连续函数fx在[a,b]上单调增加证明T(X)=1/(x-a)∫f(t)dt[a积到x]在[a 2020-06-14 …
线性代数问题设是a1,a2,a3,a4是4维非零列向量,A=[a1,a2,a3,a4],A*为A的 2020-07-09 …
求由摆线x=a(t-sint),y=a(1-cost)的一拱(0≦t≦2π)a>0绕x=πa旋转一 2020-07-10 …
已知3阶方阵A的特征值为0,1,2,所对应的特征向量为[1,1,1]T[1,1,0]T[1,0,0 2020-07-26 …
求图形面积(1)x=a(cost+tsint),y=a(sint-tcost)(0≤t≤2pi,a 2020-08-01 …
x^2+a^2的二分之三次方的积分,求双曲代换做法演示,一直算错.我一直的计算是原式=a^4∫ch^ 2020-12-05 …
求教一道微积分题设f(x)是连续函数,而Φ(x)=∫(下限0上限x)f(t)dt,F(x)=∫(下限 2021-02-13 …