早教吧作业答案频道 -->数学-->
数列求和问题an=n^2bn=q^n求an*bn的前n项和
题目详情
数列求和问题
an=n^2 bn=q^n
求an*bn的前n项和
an=n^2 bn=q^n
求an*bn的前n项和
▼优质解答
答案和解析
let
S1 = 1.q^1+2.q^2+.n.q^n (1)
qS1 = 1.q^2+2.q^3+.n.q^(n+1) (2)
(1)-(2)
(1-q)S1 = (q+q^2+...+q^n)-n.q^(n+1)
= q(1-q^n)/(1-q) -n.q^(n+1)
S1 =q(1-q^n)/(1-q)^2 -n.q^(n+1)/(1-q)
let
S2 = (1.2)q +(2.3)q^2+.+n(n+1)q^n (3)
qS2 = (1.2)q^2 +(2.3)q^3+.+n(n+1)q^(n+1) (4)
(3) -(4)
(1-q)S2 = 2q + 4q +6q^2+.+2nq^n - n(n+1)q^(n+1)
=2(q+2q^2+...+nq^n) - n(n+1)q^(n+1)
=2S1 - n(n+1)q^(n+1)
=2[q(1-q^n)/(1-q)^2 -n.q^(n+1)/(1-q) ] -n(n+1)q^(n+1)
S2 = 2[q(1-q^n)/(1-q)^3 -n.q^(n+1)/(1-q)^2 ] -n(n+1)q^(n+1)/(1-q)
cn = an.bn
=n^2.q^n
= [n(n+1) - n].q^n
= n(n+1).q^n - n.q^n
Tn=c1+c2+...+cn
= S2 -S1
= 2[q(1-q^n)/(1-q)^3 -n.q^(n+1)/(1-q)^2 ] -n(n+1)q^(n+1)/(1-q)
-[q(1-q^n)/(1-q)^2 -n.q^(n+1)/(1-q) ]
= 2[q(1-q^n)/(1-q)^3 -n.q^(n+1)/(1-q)^2 ] -n^2q^(n+1)/(1-q) -q(1-q^n)/(1-q)^2
S1 = 1.q^1+2.q^2+.n.q^n (1)
qS1 = 1.q^2+2.q^3+.n.q^(n+1) (2)
(1)-(2)
(1-q)S1 = (q+q^2+...+q^n)-n.q^(n+1)
= q(1-q^n)/(1-q) -n.q^(n+1)
S1 =q(1-q^n)/(1-q)^2 -n.q^(n+1)/(1-q)
let
S2 = (1.2)q +(2.3)q^2+.+n(n+1)q^n (3)
qS2 = (1.2)q^2 +(2.3)q^3+.+n(n+1)q^(n+1) (4)
(3) -(4)
(1-q)S2 = 2q + 4q +6q^2+.+2nq^n - n(n+1)q^(n+1)
=2(q+2q^2+...+nq^n) - n(n+1)q^(n+1)
=2S1 - n(n+1)q^(n+1)
=2[q(1-q^n)/(1-q)^2 -n.q^(n+1)/(1-q) ] -n(n+1)q^(n+1)
S2 = 2[q(1-q^n)/(1-q)^3 -n.q^(n+1)/(1-q)^2 ] -n(n+1)q^(n+1)/(1-q)
cn = an.bn
=n^2.q^n
= [n(n+1) - n].q^n
= n(n+1).q^n - n.q^n
Tn=c1+c2+...+cn
= S2 -S1
= 2[q(1-q^n)/(1-q)^3 -n.q^(n+1)/(1-q)^2 ] -n(n+1)q^(n+1)/(1-q)
-[q(1-q^n)/(1-q)^2 -n.q^(n+1)/(1-q) ]
= 2[q(1-q^n)/(1-q)^3 -n.q^(n+1)/(1-q)^2 ] -n^2q^(n+1)/(1-q) -q(1-q^n)/(1-q)^2
看了 数列求和问题an=n^2bn...的网友还看了以下:
已知数列{an}的前n项和为Sn,点(n,Sn/n)在直线y=1/2x+11/2上,数列{bn}满足 2020-03-30 …
已知数列an的前n项和为Sn,a1且Sn=S(n-1)+a(n-1)+1/2,数列bn满足b1=- 2020-05-13 …
数列1/n*(n+1)的前n项和Sn=(1/1*2)+(1/2*3)+.1/n*(n+1),求Sn 2020-05-14 …
1.设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn为数列{S 2020-06-27 …
已知数列{an}的前n项和为Sn,a1=1,a2=3,s(n+1)=4Sn-3S(n-1),(n大 2020-07-09 …
已知各项为正数的数列{an}满足a12+a22+a32+…+an2=13(4n3-n),(n∈N* 2020-07-13 …
设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1)(n=1,2,3…).数列 2020-07-22 …
数列(an)的前N项和为Sn,已知a1=1/2,Sn=n*an-n(n-1)数列(an)的前N项和 2020-08-01 …
S(n)是数列{a(n)}的前n项和,已知4S(n)=a(n)^2+2a(n)-3.求a(n)通项S 2020-12-17 …
已知数列{a(n)}的前n项和为S(n),且满足a(1)=1,a(n+1)=S(n)+1(n∈N(+ 2021-02-09 …