早教吧作业答案频道 -->数学-->
1.设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn为数列{Sn/n}的前n项和,求Tn?2.已知数列{an}的前n项和为Sn(Sn不等于0),且满足an+2Sn*Sn-1=0(n大于等于2),a1=1/2(1).求证:{1/Sn}是等
题目详情
1.设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn为数列{Sn/n}的前n项和,求Tn?
2.已知数列{an}的前n项和为Sn(Sn不等于0),且满足an+2Sn*Sn-1=0(n大于等于2),a1=1/2
(1).求证:{1/Sn}是等差数列
(2).求数列{an}的通项公式
2.已知数列{an}的前n项和为Sn(Sn不等于0),且满足an+2Sn*Sn-1=0(n大于等于2),a1=1/2
(1).求证:{1/Sn}是等差数列
(2).求数列{an}的通项公式
▼优质解答
答案和解析
1
先求出a1和d,列两条方程,根据S7=7,S15=75,公式sn=na1+n(n-1)d/2得
7a1+7×3d=7
15a1+15×7d=75
求出a1=-2 d=1
代入公式sn=na1+n(n-1)d/2
得sn=-2n+n(n-1)/2
Sn/n=-2+(n-1)/2 =n/2-5/2
2
an+2Sn*S(n-1)=0
Sn-S(n-1)+2Sn*S(n-1)=0
S(n-1)-Sn=2Sn*S(n-1)
两边除以Sn*S(n-1)
S(n-1)/Sn*S(n-1)-Sn/Sn*S(n-1)=2
1/Sn-1/S(n-1)=2
即相减是个常数
所以1/Sn是等差数列
公差d=2
S1=a1=1/2
所以1/Sn=1/S1+d(n-1)=2n
Sn=1/(2n)
所以an=Sn-S(n-1)=1/(2n)-1/2(n-1)
即an=-1/(n²-n)
先求出a1和d,列两条方程,根据S7=7,S15=75,公式sn=na1+n(n-1)d/2得
7a1+7×3d=7
15a1+15×7d=75
求出a1=-2 d=1
代入公式sn=na1+n(n-1)d/2
得sn=-2n+n(n-1)/2
Sn/n=-2+(n-1)/2 =n/2-5/2
2
an+2Sn*S(n-1)=0
Sn-S(n-1)+2Sn*S(n-1)=0
S(n-1)-Sn=2Sn*S(n-1)
两边除以Sn*S(n-1)
S(n-1)/Sn*S(n-1)-Sn/Sn*S(n-1)=2
1/Sn-1/S(n-1)=2
即相减是个常数
所以1/Sn是等差数列
公差d=2
S1=a1=1/2
所以1/Sn=1/S1+d(n-1)=2n
Sn=1/(2n)
所以an=Sn-S(n-1)=1/(2n)-1/2(n-1)
即an=-1/(n²-n)
看了 1.设{an}为等差数列,S...的网友还看了以下:
政府支出乘数的问题,山东大学以前的考题,不是很理解第5问,书上不就是一个等式么,为啥会不一致已知C 2020-05-13 …
在等差数列{an}中,若s,t∈N※,有(as-at)/(s-t)=常数若s.t,r∈N※,且s, 2020-05-14 …
把下列参数方程化为普通方程,并说明它们各表示什么曲线,1)x=3-2t(t为参数)(2)x=cos 2020-06-23 …
若数列{An}满足An+T=An,其中T为非零正整数,则称数列{An}为周期数列,T为数列{An} 2020-07-09 …
已知数列{an}的前n项和Sn满足:Sn=t(Sn-an+1)(t为常数,且t≠0,t≠1).(1 2020-07-16 …
对任意的正数s,t,有下列4个关系式:①f(s+t)=f(s)+f(t);②f(s+t)=f(s) 2020-07-20 …
对于数列A:a1,a2,…,an,记Mi表示实数a1,a2,…,ai中最大的数,mi表示实数ai,a 2020-10-31 …
已知数列{an}的前n项和Sn满足:Sn=t(Sn-an+1)(t为常数,且t≠0,t≠1).(1) 2020-11-19 …
数列{an}前项和为(n+1)^2+t,则n+1项和为(n+2)^2+t两式相减,得第n+1项为:2 2020-11-24 …
把下列参数方程化为普通方程,并说明它们各表示什么曲线,1)x=3-2t(t为参数)(2)x=cosθ 2021-02-10 …