早教吧作业答案频道 -->其他-->
已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:①M={(x,y)|y=1x};②M={(x,y)|y=si
题目详情
已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:
①M={(x,y)|y=
};
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex-2}.
其中是“垂直对点集”的序号是______.
①M={(x,y)|y=
1 |
x |
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex-2}.
其中是“垂直对点集”的序号是______.
▼优质解答
答案和解析
由题意,若集合M={(x,y)|y=f(x)}满足,对于任意A(x1,y1)∈M,存在B(x2,y2)∈M,使得x1x2+y1y2=0成立,因此
⊥
.所以,若M是“垂直对点集”,那么在M图象上任取一点A,过原点与直线OA垂直的直线OB总与函数图象相交于点B.
对于①M={(x,y)|y=
},其图象是过一、三象限的双曲线,做第一象限的角平分线与双曲线交于点A,与OA垂直的直线是二、四象限的角平分线,显然与双曲线没有公共点.所以对于点A,在图象上不存在点B,使得OB⊥OA,所以①不符合题意;
对于②M={(x,y)|y=sinx+1},画出函数图象,在图象上任取一点A,连OA,过原点作直线OA的垂线OB,因为y=sinx+1的图象沿x轴向左向右无限延展,且与x轴相切,因此直线OB总会与y=sinx+1的图象相交.所以M={(x,y)|y=sinx+1}是“垂直对点集”,故②符合;
对于③M={(x,y)|y=log2x},对于函数y=log2x,过原点做出其图象的切线OT(切点T在第一象限),则过切点T做OT的垂线,则垂线必不过原点,所以对切点T,不存在点M,使得OM⊥OT,所以M={(x,y)|y=log2x}不是“垂直对点集”;故③不符合题意;
对于④M={(x,y)|y=ex-2},其图象过点(0,-1),且向右向上无限延展,向左向下无限延展,所以,据图可知,在图象上任取一点A,连OA,过原点作OA的垂线OB必与y=ex-2的图象相交,即一定存在点B,使得OB⊥OA成立,故M={(x,y)|y=ex-2}是“垂直对点集”.
故答案为:②④
OA |
OB |
对于①M={(x,y)|y=
1 |
x |
对于②M={(x,y)|y=sinx+1},画出函数图象,在图象上任取一点A,连OA,过原点作直线OA的垂线OB,因为y=sinx+1的图象沿x轴向左向右无限延展,且与x轴相切,因此直线OB总会与y=sinx+1的图象相交.所以M={(x,y)|y=sinx+1}是“垂直对点集”,故②符合;
对于③M={(x,y)|y=log2x},对于函数y=log2x,过原点做出其图象的切线OT(切点T在第一象限),则过切点T做OT的垂线,则垂线必不过原点,所以对切点T,不存在点M,使得OM⊥OT,所以M={(x,y)|y=log2x}不是“垂直对点集”;故③不符合题意;
对于④M={(x,y)|y=ex-2},其图象过点(0,-1),且向右向上无限延展,向左向下无限延展,所以,据图可知,在图象上任取一点A,连OA,过原点作OA的垂线OB必与y=ex-2的图象相交,即一定存在点B,使得OB⊥OA成立,故M={(x,y)|y=ex-2}是“垂直对点集”.
故答案为:②④
看了 已知集合M={(x,y)|y...的网友还看了以下:
对于数集X={-1,x1,x2,…,xn},其中0<x1<x2<…<xn,n≥2,定义向量的集合Y 2020-06-11 …
已知函数f(x)=Asin(wx+φ)的图象如图所示,试依图指出(1)f(x)最小正周期(2)使f 2020-06-27 …
设集合X是实数集R的子集,如果点x0∈R满足:对任意a>0,都存在x∈X,使得0<|x-x0|<a 2020-07-09 …
设(X,d)是度量空间,A是X的子集,如果A=int(cl(A)),那么,我们称A是空间(X,d) 2020-07-23 …
命题p:彐x∈R使得X^2+x+1<0则非p:彐x∈R,使得x^2+x+1>0对吗?理由?如果不对 2020-07-24 …
已知集合A={(x,y)|x|+|y|=a,a>0}B={(x,y}||xy|+1=|x|+|y| 2020-07-30 …
设非空集合A,B满足A⊆B,则()A.∃x∈A,使得x∉BB.∀x∈A,有x∈BC.∃x∈B,使得 2020-08-01 …
设非空集合P、Q满足P⊆Q,则()A.∀x∈Q,有x∈PB.∀x∈P,有x∈QC.∃x∉Q,使得x 2020-08-01 …
设集合X是实数集R的子集,如果点x0∈R满足:对任意a>0,都存在x∈X,使得0<|x-x0|<a, 2020-11-01 …
1.集合U={1,5}为全集,S包含于U,T包含于U,S交T={2},S的补集交T={4},S的补集 2020-12-08 …