早教吧作业答案频道 -->其他-->
如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接
题目详情
如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC 
(1)求点C的坐标,并求出直线AC的关系式.
(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.
(3)如图3,在(1)的条件下,直线AC交x轴于M,P(−
,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.

(1)求点C的坐标,并求出直线AC的关系式.
(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.
(3)如图3,在(1)的条件下,直线AC交x轴于M,P(−
| 5 |
| 2 |
▼优质解答
答案和解析
(1)如图1,作CQ⊥x轴,垂足为Q,
∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,
∴∠OAB=∠QBC,
又∵AB=BC,∠AOB=∠Q=90°,
∴△ABO≌△BCQ,
∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,
∴C(-3,1),
由A(0,2),C(-3,1)可知,直线AC:y=
x+2;
(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,
∵AC=AD,AB⊥CB,
∴BC=BD,
∴△BCH≌△BDF,
∴BF=BH=2,
∴OF=OB=1,
∴DG=OB,
∴△BOE≌△DGE,
∴BE=DE;
(3)如图3,直线BC:y=-
x-
,P(−
,k)是线段BC上一点,
∴P(-
,
),
由y=
x+2知M(-6,0),
∴BM=5,则S△BCM=
.
假设存在点N使直线PN平分△BCM的面积,
则
BN•
=
×
,
∴BN=
,ON=
,
∵BN<BM,
∴点N在线段BM上,
∴N(-
,0).
(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,
∴∠OAB=∠QBC,
又∵AB=BC,∠AOB=∠Q=90°,
∴△ABO≌△BCQ,
∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,
∴C(-3,1),
由A(0,2),C(-3,1)可知,直线AC:y=
| 1 |
| 3 |
(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,
∵AC=AD,AB⊥CB,
∴BC=BD,
∴△BCH≌△BDF,
∴BF=BH=2,
∴OF=OB=1,
∴DG=OB,
∴△BOE≌△DGE,
∴BE=DE;
(3)如图3,直线BC:y=-
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 2 |
∴P(-
| 5 |
| 2 |
| 3 |
| 4 |
由y=
| 1 |
| 3 |
∴BM=5,则S△BCM=
| 5 |
| 2 |
假设存在点N使直线PN平分△BCM的面积,
则
| 1 |
| 2 |
| 3 |
| 4 |
| 1 |
| 2 |
| 5 |
| 2 |
∴BN=
| 10 |
| 3 |
| 13 |
| 3 |
∵BN<BM,
∴点N在线段BM上,
∴N(-
| 13 |
| 3 |
看了 如图1,已知直线y=2x+2...的网友还看了以下:
已知圆M:x+(y-2)=1,设点B,C是直线l:x-2y=0上的两点x+(y-2)=1,设点B, 2020-04-12 …
已知圆M:x?+(y-2)?=1,设点B,C是直线l:x-2y=0上的两点x?+(y-2)?=1, 2020-04-12 …
已知:以点C(t,t/2)(t属于R且不等于O)为圆心的圆与x轴交与O,A,与y轴相交与点O,B, 2020-06-06 …
设直线L分别与X轴Y轴交与点AB,如果直线M:Y=KX+T(T大于0)与直线L平行且交X轴于C,求 2020-06-12 …
如图,在圆O中AB是直径,AT是经过点A的切线,弦CD垂直AB于P点,线段CP的中点为Q,连接BQ 2020-06-12 …
已知f(x)=3xx≥0f(x)=㏒3(-x)x<0函数:g(x)=f2(x)+f(x)+t,关于 2020-06-13 …
酒精在什么温度范围内是固态酒精沸点78℃,熔点-117摄氏度,请用大于号小于号连接起来,给出一个式 2020-08-01 …
已知抛物线cy22px设抛物线上一点p的横坐标为t过p的直线交c与另一点已知抛物线C:y=x^2上一 2020-11-27 …
巳知以C(t,2/t)(t属于R,t不等于0)为圆心的圆与x轴交于O、A,与y轴交于O、B,其中O为 2020-11-28 …
求一道向量题设向量P和向量Q是点P和点Q在平面中的向量,通过PQ两点的向量方程为r=(1-t)p+t 2020-11-30 …