早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知椭圆C的离心率为根号3除以2在x轴上顶点为a1(-2,0),a2(2,0)1求椭圆的方程2.求若直线l;x=t(t>2)与x轴交于点>p,点p为l上异与点T的任一点,直线PA1,PA2分别与椭圆交于M,N点,试问直线MN是否通过椭

题目详情
已知椭圆C的离心率为根号3除以2在x轴上顶点为a1(-2,0),a2(2,0)1求椭圆的方程
2.求若直线l;x=t(t>2)与x轴交于点>p,点p为l上异与点T的任一点,直线PA1,PA2分别与椭圆交于M,N点,试问直线MN是否通过椭圆的焦点?并证明你的结论.
▼优质解答
答案和解析
1.a=2,c=a*e=2*√3/2=√3,b=√(4-3)=1,则椭圆方程为:x^2/4+y^2=1
2.设P(t,y0),PA1方程:y=y0/(t+2)*(x+2),PA2方程:y=y0/(t-2)*(x-2),
PA1方程与椭圆方程联立,解得x1=-2,x2=(-8y0+2(t+2)^2)/(4y0^2+(t+2)^2),
Y1=0,y2=4(t+2)y0/(4y0^2+(t+2)^2),即M(x2,y2)
PA2方程与椭圆方程联立,解得x3=2,x4=(8y0-2(t+2)^2)/(4y0^2+(t+2)^2),
y3=0,y4=-4(t-2)y0/(4y0^2+(t+2)^2),即N(x4,y4)
MN直线方程整理得:y=2ty0*x/((t+2)^2-4y0)+8y0/(4y0^2+(t+2)^2),
椭圆焦点F1(√3,0)或F2(-√3,0)代入上式,左端≠右端,所以,直线MN不通过椭圆的焦点.