早教吧作业答案频道 -->数学-->
关于曲线系方程的问题1 为什么过2圆交点的圆系方程可以设为 k1(x^2+y^2+D1x+E1y+F1)+k2(x^2+y^2+D2x+E2y+F2)=0 ,(k1^2+k2^2>0,且k1+k2≠0)2 和1类似,为什么一条线与已知圆相交于两点,过2个交点的圆系方程可
题目详情
关于曲线系方程的问题
1 为什么过2圆交点的圆系方程可以设为 k1(x^2+y^2+D1x+E1y+F1)+k2(x^2+y^2+D2x+E2y+F2)=0 ,(k1^2+k2^2>0,且k1+k2≠0)
2 和1类似,为什么一条线与已知圆相交于两点,过2个交点的圆系方程可以设为 x^2+y^2+Dx+Ey+F+K(AX+BY+C)=O
3 已知圆C1及圆上一点(m,n),为什么C1+K[(x-m)^2+(y-n)^2]=0 k为参数
表示与C1相切于(m,n)的圆系
4 同3,为什么未知圆与直线Ax+By+C=0相切于(m,n)这个圆可以设为(x-m)^2+(y-n)^2+k(Ax+By+C)=0
其实是一类问题 分用光了= - 所以.见谅
1 为什么过2圆交点的圆系方程可以设为 k1(x^2+y^2+D1x+E1y+F1)+k2(x^2+y^2+D2x+E2y+F2)=0 ,(k1^2+k2^2>0,且k1+k2≠0)
2 和1类似,为什么一条线与已知圆相交于两点,过2个交点的圆系方程可以设为 x^2+y^2+Dx+Ey+F+K(AX+BY+C)=O
3 已知圆C1及圆上一点(m,n),为什么C1+K[(x-m)^2+(y-n)^2]=0 k为参数
表示与C1相切于(m,n)的圆系
4 同3,为什么未知圆与直线Ax+By+C=0相切于(m,n)这个圆可以设为(x-m)^2+(y-n)^2+k(Ax+By+C)=0
其实是一类问题 分用光了= - 所以.见谅
▼优质解答
答案和解析
这类问题涉及到圆幂和根轴的有关知识.
圆幂定义为平面上有一点P,有一圆O,其半径为R,则OP^2-R^2即为P点到圆O的幂.
根轴的定义为在平面上任给两不同心的圆,则对两圆圆幂相等的点的集合是一条直线,这条线称为这两个圆的根轴.
容易证明:
1) 若两圆相交,则两圆的根轴为公共弦所在的直线;
2) 若两圆相切,则两圆的根轴为它们的内公切线;
3)任意两圆x^2+y^2+D1x+E1y+F1和x^2+y^2+D2x+E2y+F2,根轴方程为 (D1-D2)x+(E1-E2)y + F1-F2 = 0
有了以上知识,首先可以证明第二题,然后是第一题.
第三题和第四题也类似.可以先证明第四题再证明第三题.
圆幂定义为平面上有一点P,有一圆O,其半径为R,则OP^2-R^2即为P点到圆O的幂.
根轴的定义为在平面上任给两不同心的圆,则对两圆圆幂相等的点的集合是一条直线,这条线称为这两个圆的根轴.
容易证明:
1) 若两圆相交,则两圆的根轴为公共弦所在的直线;
2) 若两圆相切,则两圆的根轴为它们的内公切线;
3)任意两圆x^2+y^2+D1x+E1y+F1和x^2+y^2+D2x+E2y+F2,根轴方程为 (D1-D2)x+(E1-E2)y + F1-F2 = 0
有了以上知识,首先可以证明第二题,然后是第一题.
第三题和第四题也类似.可以先证明第四题再证明第三题.
看了 关于曲线系方程的问题1 为什...的网友还看了以下:
某商场预计2018年第x月顾客对某种商品的需求量f(x)与x的关系近似满足:f(x)=-3x2+4 2020-06-14 …
某服装公司销售一种成本为每件50元的T恤衫,发现销售量y(件)与销售单价x(元)的关系可以近似的看 2020-06-22 …
已知两个变量x,y的关系可以近似地用函数y=axb来表示,通过两边取自然对数变换后得到一个线性函数 2020-08-01 …
探索绕公共顶点的相似多边形的旋转:(1)如图1,已知:等边△ABC和等边△ADE,根据(指出三角形 2020-08-01 …
将Ag(s)插入AgNO3(0.001mol·kg-1)和NH3·H2O(0.1mol·kg-1)的 2020-10-31 …
实验数据显示,一般成人喝半斤低度白酒后,1.5时内其血液中酒精含量y(毫克/百毫升)与时间(时)的关 2020-11-06 …
原子的近似相对原子质量、元素的近似相对原子质量、摩尔质量、式量互相是怎样一个关系?可以的话也解释一下 2020-11-28 …
直线y=ax+1与圆x^2+y^2-2x-3=0的位置关系是?我的做法是将y=ax+1代入x^2+y 2020-12-05 …
(2014•舟山)实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫 2020-12-08 …
某医药研究所开发一种新药,实验数据显示,如果成人按规定的剂量服药,1.5小时内血液中含药量y1(毫克 2020-12-22 …