早教吧作业答案频道 -->数学-->
关于曲线系方程的问题1 为什么过2圆交点的圆系方程可以设为 k1(x^2+y^2+D1x+E1y+F1)+k2(x^2+y^2+D2x+E2y+F2)=0 ,(k1^2+k2^2>0,且k1+k2≠0)2 和1类似,为什么一条线与已知圆相交于两点,过2个交点的圆系方程可
题目详情
关于曲线系方程的问题
1 为什么过2圆交点的圆系方程可以设为 k1(x^2+y^2+D1x+E1y+F1)+k2(x^2+y^2+D2x+E2y+F2)=0 ,(k1^2+k2^2>0,且k1+k2≠0)
2 和1类似,为什么一条线与已知圆相交于两点,过2个交点的圆系方程可以设为 x^2+y^2+Dx+Ey+F+K(AX+BY+C)=O
3 已知圆C1及圆上一点(m,n),为什么C1+K[(x-m)^2+(y-n)^2]=0 k为参数
表示与C1相切于(m,n)的圆系
4 同3,为什么未知圆与直线Ax+By+C=0相切于(m,n)这个圆可以设为(x-m)^2+(y-n)^2+k(Ax+By+C)=0
其实是一类问题 分用光了= - 所以.见谅
1 为什么过2圆交点的圆系方程可以设为 k1(x^2+y^2+D1x+E1y+F1)+k2(x^2+y^2+D2x+E2y+F2)=0 ,(k1^2+k2^2>0,且k1+k2≠0)
2 和1类似,为什么一条线与已知圆相交于两点,过2个交点的圆系方程可以设为 x^2+y^2+Dx+Ey+F+K(AX+BY+C)=O
3 已知圆C1及圆上一点(m,n),为什么C1+K[(x-m)^2+(y-n)^2]=0 k为参数
表示与C1相切于(m,n)的圆系
4 同3,为什么未知圆与直线Ax+By+C=0相切于(m,n)这个圆可以设为(x-m)^2+(y-n)^2+k(Ax+By+C)=0
其实是一类问题 分用光了= - 所以.见谅
▼优质解答
答案和解析
这类问题涉及到圆幂和根轴的有关知识.
圆幂定义为平面上有一点P,有一圆O,其半径为R,则OP^2-R^2即为P点到圆O的幂.
根轴的定义为在平面上任给两不同心的圆,则对两圆圆幂相等的点的集合是一条直线,这条线称为这两个圆的根轴.
容易证明:
1) 若两圆相交,则两圆的根轴为公共弦所在的直线;
2) 若两圆相切,则两圆的根轴为它们的内公切线;
3)任意两圆x^2+y^2+D1x+E1y+F1和x^2+y^2+D2x+E2y+F2,根轴方程为 (D1-D2)x+(E1-E2)y + F1-F2 = 0
有了以上知识,首先可以证明第二题,然后是第一题.
第三题和第四题也类似.可以先证明第四题再证明第三题.
圆幂定义为平面上有一点P,有一圆O,其半径为R,则OP^2-R^2即为P点到圆O的幂.
根轴的定义为在平面上任给两不同心的圆,则对两圆圆幂相等的点的集合是一条直线,这条线称为这两个圆的根轴.
容易证明:
1) 若两圆相交,则两圆的根轴为公共弦所在的直线;
2) 若两圆相切,则两圆的根轴为它们的内公切线;
3)任意两圆x^2+y^2+D1x+E1y+F1和x^2+y^2+D2x+E2y+F2,根轴方程为 (D1-D2)x+(E1-E2)y + F1-F2 = 0
有了以上知识,首先可以证明第二题,然后是第一题.
第三题和第四题也类似.可以先证明第四题再证明第三题.
看了 关于曲线系方程的问题1 为什...的网友还看了以下:
物体温度升高的速度为什么是与质量有关而不是与体积有关?我是初三学生,前几天学了比热容,一直搞不明白 2020-05-14 …
重力做功为什么与路程无关重力做功:只跟它的起点和终点的位置有关,而跟物体的运动路径无关.为什么 解 2020-05-17 …
关于曲线系方程的问题1 为什么过2圆交点的圆系方程可以设为 k1(x^2+y^2+D1x+E1y+ 2020-05-17 …
概率基本问题连续型分布函数F(x)是一个关于随机变量X的函数,那么为什么函数方程式是关于x的方程呢 2020-06-03 …
关于函数变换的问题,f(x)与f(ax)什么关系,为什么?从图像上怎么分析?f(x)与f(ax+b 2020-06-08 …
x^2+y^2+D1x+E1y+F1+λ(x^2+y^2+D2x+E2y+F2)=0,为什么不应该 2020-06-09 …
为什么力矩是力臂关于力的积分?为什么不能是力关于力臂的积分呢?(我已经验算过答案不对)同理为什么路 2020-07-04 …
关系型数据库是什么?“在关系型数据库中,用二维表来表示关系,二维表的表名即关系名,二维表的行称为关 2020-07-10 …
宗族关系和血缘关系有什么区别?如题,请大家用比较白话的语言向我解释一下,是不是宗族关系包括血缘关系 2020-07-28 …
既然M=PV,那么为什么与他们无关,这是科学的漏洞!既然M=PV,那么为什么与p,v无关,无关怎么会 2020-12-02 …