早教吧 育儿知识 作业答案 考试题库 百科 知识分享

高数积分问题∫x^2lnxdx∫x^2lnxdx=x^2*1/x-∫1/xd(x^2)=x^2*1/x-2x+c=-x+c我知道错了但是哪儿错了?

题目详情
高数积分问题∫x^2lnxdx
∫x^2lnxdx
=x^2*1/x-∫1/xd(x^2)
=x^2*1/x-2x+c=-x+c
我知道错了 但是哪儿错了?
▼优质解答
答案和解析
没看懂你第一步怎么做出来的..
你是想换元么?这题不应该换元,换元的话你也换错了(我没仔细看),换元是外边是倒数形式,才能换到d后边(我没法输公式,不知道你能不能看懂..)
这一题可以用分部积分法的公式:∫udv=uv-∫vdu
∫x^2lnxdx
=1/3×∫lnxdx^3 (看到没d后换成x^3,前边就要配1/3,因为1/3x^2的原函数是x^3)
=1/3×(x^3×lnx-∫x^3dlnx) (这一步就是代入公式)
=1/3×(x^3×lnx-∫x^3×1/xdx)
=1/3×(x^3×lnx-∫x^2dx)
=1/3×(x^3×lnx-1/3∫x^2dx^3)
=x^3×lnx/3-x^3/9+c