早教吧作业答案频道 -->数学-->
如图,射线AM交一圆于点B、C,射线AN交该圆于点D、E,且BC=DE.(1)求证:AC=AE;(2)利用尺规作图,分别作线段CE的垂直平分线与∠MCE的平分线,两线交于点F(保留作图痕迹,不写作法)
题目详情
如图,射线AM交一圆于点B、C,射线AN交该圆于点D、E,且
=
.

(1)求证:AC=AE;
(2)利用尺规作图,分别作线段CE的垂直平分线与∠MCE的平分线,两线交于点F(保留作图痕迹,不写作法),求证:EF平分∠CEN.
![]() |
| BC |
![]() |
| DE |

(1)求证:AC=AE;
(2)利用尺规作图,分别作线段CE的垂直平分线与∠MCE的平分线,两线交于点F(保留作图痕迹,不写作法),求证:EF平分∠CEN.
▼优质解答
答案和解析
证明:(1)作OP⊥AM于P,OQ⊥AN于Q,连接AO,BO,DO.

∵
=
,
∴BC=DE,
∴BP=DQ,
又∵OB=OD,
∴△OBP≌△ODQ,
∴OP=OQ.
∴BP=DQ=CP=EQ.
直角三角形APO和AQO中,
AO=AO,OP=OQ,
∴△APO≌△AQO.
∴AP=AQ.
∵CP=EQ,
∴AC=AE.
(2)∵AC=AE,
∴∠ACE=∠AEC.
∴∠ECM=∠CEN.
由于AF是CE的垂直平分线,
∴CF=EF.
∴∠FCE=∠FEC=
∠MCE=
∠CEN.
因此EF平分∠CEN.

∵
![]() |
| BC |
![]() |
| DE |
∴BC=DE,
∴BP=DQ,
又∵OB=OD,
∴△OBP≌△ODQ,
∴OP=OQ.
∴BP=DQ=CP=EQ.
直角三角形APO和AQO中,
AO=AO,OP=OQ,
∴△APO≌△AQO.∴AP=AQ.
∵CP=EQ,
∴AC=AE.
(2)∵AC=AE,
∴∠ACE=∠AEC.
∴∠ECM=∠CEN.
由于AF是CE的垂直平分线,
∴CF=EF.
∴∠FCE=∠FEC=
| 1 |
| 2 |
| 1 |
| 2 |
因此EF平分∠CEN.
看了 如图,射线AM交一圆于点B、...的网友还看了以下:
如图,已知点A为圆O:x2+y2=9与圆C:(x-5)2+y2=16在第一象限内的交点.过A的直线 2020-05-14 …
已知圆c:x2+(y-1)2=5,直线l:x-my+m-1=01小时内求解已知圆c:x2+(y-1 2020-06-03 …
关于椭圆,双曲线,1.椭圆的中心O'(1,-2),长轴和短轴分别平行于x轴y轴,且长分别为10和6 2020-06-03 …
高一直线与圆的位置关系!1.过点P(-3,-4)作直线L,当L的斜率为何值时,(1)直线L将圆(X 2020-06-07 …
运用反证法,证明圆的相切线垂直圆用反证法。切线过切点,且切点到圆心的距离为圆的半径。如果切点与圆心 2020-06-09 …
在平面直角坐标系xoy中,已知A(0,b),圆C的半径为1,圆心在直线l:y=2x-4上.1.若在 2020-06-14 …
已知直线l1:3x+4y-5=0,圆O:x2+y2=4.(1)求直线l1被圆O所截得的弦长;(2) 2020-07-08 …
已知圆(x-1)+(y-2)=25直线2ax-y+2a-1=0(1)证无论a取何值时直线l与圆相交( 2020-12-25 …
设与直线x-y-1=0与直线x-y-1=0经过点(2,-1)且圆心在直线2x+y=0上求这个圆的方程 2021-01-11 …
已知圆C的方程(x-1)^2+(y-1)^2=4,直线l:y=x+m,求档m为何值时,1直线平分圆2 2021-01-12 …

