早教吧作业答案频道 -->数学-->
x^2-y^2=a^2右准线交实轴于P,过P直线交双曲线A、B,过右焦点F引直线垂直AB交双曲线于C、D双曲线x^2-y^2=a^2的右准线与实轴交于P点,过P点引一直线和双曲线交于A、B两点,又过右焦点F引直线垂直于AB
题目详情
▼优质解答
答案和解析
15分的悬赏分,太少,不懂江湖规矩!见了答案给我追加20分,否则别在百度混了!
今天便宜你了,看着!
由题意可知P(√2a/2,0),F(√2a,0)
设过P的直线的倾斜角为A,则过F的直线的倾斜角为90°+A
则过P的直线的参数方程为:x=√2a/2+tcosA,y=tsinA(t为参数,其几何意义为直线上到P点的有向线段的长度)
带入双曲线方程,并化简
得:(cos^2A-sin^2A)t^2+√2atcosA-a^2/2=0
故两根之积t1*t2=(-a^2/2)/(cos^2A-sin^2A)
有过F的直线的参数方程:
x=√2a+qcos(A+90°)=√2a-qsin(A),y=qcos(A+90°)=qcosA
(q的几何意义同上)
带入双曲线方程并化简:
(sin^2A-cos^2A)q^2-2√2aqsinA+a^2=0
q1*q2=a^2/(sin^2A-cos^2A)
因为:|q1*q2|=2|t1*t2|
所以:|FC|·|FD|=2|PA|·|PB|成立!
能看懂吗?看不懂的地方就再提出来.
今天便宜你了,看着!
由题意可知P(√2a/2,0),F(√2a,0)
设过P的直线的倾斜角为A,则过F的直线的倾斜角为90°+A
则过P的直线的参数方程为:x=√2a/2+tcosA,y=tsinA(t为参数,其几何意义为直线上到P点的有向线段的长度)
带入双曲线方程,并化简
得:(cos^2A-sin^2A)t^2+√2atcosA-a^2/2=0
故两根之积t1*t2=(-a^2/2)/(cos^2A-sin^2A)
有过F的直线的参数方程:
x=√2a+qcos(A+90°)=√2a-qsin(A),y=qcos(A+90°)=qcosA
(q的几何意义同上)
带入双曲线方程并化简:
(sin^2A-cos^2A)q^2-2√2aqsinA+a^2=0
q1*q2=a^2/(sin^2A-cos^2A)
因为:|q1*q2|=2|t1*t2|
所以:|FC|·|FD|=2|PA|·|PB|成立!
能看懂吗?看不懂的地方就再提出来.
看了 x^2-y^2=a^2右准线...的网友还看了以下:
x^2-y^2=a^2右准线交实轴于P,过P直线交双曲线A、B,过右焦点F引直线垂直AB交双曲线于 2020-04-08 …
如图,抛物线y=-5/4x^2+17/4x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过 2020-05-13 …
10.设直线y=ax+b与双曲线3x*2-y*2=1交于A,B,以AB为直径的圆过原点,求点P(a 2020-05-16 …
已知抛物线y=x^2;+bx+c经过点(1,-5)和(-2,4)(1)求这条抛物线的解析式(2)设 2020-05-20 …
求双曲线的离心率的选择题求解.已知双曲线C1:X^2/a^2-y^2/b^2=10,b>0>于抛物 2020-06-03 …
已知:直线l:y=x+2与过点(0,-2),且与平行于x轴的直线交于点A,点A关于直线x=-1的对 2020-06-11 …
如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=65°,求∠2的度数. 2020-06-15 …
(1/2)过抛物线x^2=2py(p大于0)的焦点作斜率为1的直线与该抛物线交于A,B两点,A,B 2020-07-30 …
圆1和圆2外切于M,它们的两条外公切线夹角为60度,连心线与圆1、圆2分别交于A、B,(异于M点) 2020-08-01 …
已知点F是双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的左焦点P为右支上一点直线P 2021-01-11 …