早教吧作业答案频道 -->数学-->
高等函数证明题!设f(x)在[0,1]上连续!且有f(0)=0,f(1)=1证明至少存在一点b在(0,1)使得f(b)=1-b..
题目详情
高等函数证明题!
设f(x)在[0,1]上连续!且有f(0)=0,f(1)=1 证明至少存在一点b在(0,1) 使得f(b)=1-b ..
设f(x)在[0,1]上连续!且有f(0)=0,f(1)=1 证明至少存在一点b在(0,1) 使得f(b)=1-b ..
▼优质解答
答案和解析
楼上的证明是有问题的.
其一,由已知,根本得不出函数f(x)在(0,1)上为单调增函数!
其二,你要引入的函数好像应该是y=1-f(x),而不是y=1-b,因为在你最后确定了点b后,y=1-b变成了一个常数.当然,还有y=1-b图像是函数值在(0,1)间的单调减函数,是犯了和上面的一同样的错误.
其三,证明过程中的语言:在同一坐标轴上画出这两个图像则.必有一交点.通常是不允许的.因为如果允许用这样的语言证明问题,那么连续函数的介值定理,只要用类似你说的一句话就证明了.
上面所言,皆对于数学.请楼上学兄恕弟乱言之罪.
下面,我试着给出一个证明.
证:
定义一个新函数
g(x)=f(x)+x-1
首先,易证g(x)也在[0,1]连续.(理由是几个连续函数的和仍然是连续函数)
其次有
g(0)=f(0)+0-1=-1
g(1)=f(1)+1-1=1
所以,据连续函数的介值定理,知
至少存在一点b在(0,1) 使得
g(b)=0
即
f(b)+b-1=0
从而
f(b)=1-b
这就证明了我们所要证明的.
其一,由已知,根本得不出函数f(x)在(0,1)上为单调增函数!
其二,你要引入的函数好像应该是y=1-f(x),而不是y=1-b,因为在你最后确定了点b后,y=1-b变成了一个常数.当然,还有y=1-b图像是函数值在(0,1)间的单调减函数,是犯了和上面的一同样的错误.
其三,证明过程中的语言:在同一坐标轴上画出这两个图像则.必有一交点.通常是不允许的.因为如果允许用这样的语言证明问题,那么连续函数的介值定理,只要用类似你说的一句话就证明了.
上面所言,皆对于数学.请楼上学兄恕弟乱言之罪.
下面,我试着给出一个证明.
证:
定义一个新函数
g(x)=f(x)+x-1
首先,易证g(x)也在[0,1]连续.(理由是几个连续函数的和仍然是连续函数)
其次有
g(0)=f(0)+0-1=-1
g(1)=f(1)+1-1=1
所以,据连续函数的介值定理,知
至少存在一点b在(0,1) 使得
g(b)=0
即
f(b)+b-1=0
从而
f(b)=1-b
这就证明了我们所要证明的.
看了 高等函数证明题!设f(x)在...的网友还看了以下:
证明连续性有函数F如果实数X0.那么F(X)=3利用函数连续性的定义证明F在0处不连续.第一个差不 2020-04-27 …
1.函数f(x)=e^|x-a|在x=a处()A.连续但不可导B.导函数连续2.函数f(x)..当 2020-05-14 …
一道大一数学题,急等!设f(x)有二阶连续导数,且f(0)=0,试证函数g(x)可导,且g'(x) 2020-06-06 …
在什么条件下,函数f(x)=|(x^a)*sin(1/x)(x不等于0)|0(x等于0)(1)在点 2020-06-12 …
1.原函数连续可导,则它的任意阶导函数是否连续可导?2.已知函数的某阶导函数存在,可否推知比它低阶 2020-06-18 …
左右导数均存在但不等时,函数连续吗?全书上的一个分析函数是分段函数,讨论在分段点x=0处的可导性因 2020-07-27 …
关于f(x)=x(x是无理数)的连续性问题1、大学课本上说的是连续的,但是全体有理数不连续.2、函 2020-07-31 …
一个函数连续则它有原函数,那么它的原函数也是连续的吗?若连续,给出证明举一个例子,说明连续函数的原 2020-08-02 …
证明若任意xy属于R有fx+y=fx+fy,且fx在0连续,则函数fx在R上连续,且证明若任意xy属 2020-11-01 …
求函数f(x)=x的极限函数f(x)=x在实数里处处连续,没有间断点.几何图形是过1,3象限,45度 2020-11-01 …