早教吧作业答案频道 -->数学-->
过抛物线y^2=2px(p大于0)的焦点,做一条直线交抛物线于A,B两点,以AB为直径的圆与抛物线的准线切于点(-2,-2),求1.抛物线的方程2.直线AB的方程3.圆的方程
题目详情
过抛物线y^2=2px(p大于0)的焦点,做一条直线交抛物线于A,B两点,以AB为直径的圆与抛物线的准线切于点
(-2,-2),求1.抛物线的方程2.直线AB的方程3.圆的方程
(-2,-2),求1.抛物线的方程2.直线AB的方程3.圆的方程
▼优质解答
答案和解析
1) y^2= 2px 的准线方程是 x = -p/2
由条件知 点(-2,-2)在准线上,故 -p/2 = -2 ,所以 p = 4
所以 抛物线的方程是 y^2= 8x
2) 从而抛物线的焦点为 F(2,0)
设直线方程为 y = k(x-2) ,即 x = y/k + 2
与抛物线方程 y^2 = 8x 联立,消去 x ,得 y^2- (8/k)y - 16 = 0
由韦达定理可得 AB 的中点 M 的纵坐标为 4/k
半径 MC 垂直于准线于点 C(-2,-2)
所以 M、C 的纵坐标应该相等,即 4/k = -2 ,所以 k = -2
所以 直线 AB 的方程是 y = -2(x-2) 即 2x + y - 4 = 0
3) 从而圆心纵坐标为 -2 ,代入 2x + y - 4 = 0 得 横坐标为 3
即 M(3,-2)
所以 半径 |MC| = 3-(-2) = 5
所以 圆的方程为 (x-3)^2+ (y+2)^2 = 25
很高兴为您解答,【学习宝典】团队为您答题.
请点击下面的【选为满意回答】按钮,
由条件知 点(-2,-2)在准线上,故 -p/2 = -2 ,所以 p = 4
所以 抛物线的方程是 y^2= 8x
2) 从而抛物线的焦点为 F(2,0)
设直线方程为 y = k(x-2) ,即 x = y/k + 2
与抛物线方程 y^2 = 8x 联立,消去 x ,得 y^2- (8/k)y - 16 = 0
由韦达定理可得 AB 的中点 M 的纵坐标为 4/k
半径 MC 垂直于准线于点 C(-2,-2)
所以 M、C 的纵坐标应该相等,即 4/k = -2 ,所以 k = -2
所以 直线 AB 的方程是 y = -2(x-2) 即 2x + y - 4 = 0
3) 从而圆心纵坐标为 -2 ,代入 2x + y - 4 = 0 得 横坐标为 3
即 M(3,-2)
所以 半径 |MC| = 3-(-2) = 5
所以 圆的方程为 (x-3)^2+ (y+2)^2 = 25
很高兴为您解答,【学习宝典】团队为您答题.
请点击下面的【选为满意回答】按钮,
看了 过抛物线y^2=2px(p大...的网友还看了以下:
以双曲线-=1的右准线为准线以坐标原点O为顶点的抛物线截双曲线的左准线得弦AB则△OAB的面积等于 2020-04-08 …
以双曲线-=1的右准线为准线以坐标原点O为顶点的抛物线截双曲线的左准线得弦AB则△AOB的面积等于 2020-04-08 …
设双曲线C的中心在原点,以抛物线的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线.(1)试求双 2020-04-08 …
设双曲线C的中心在原点,以抛物线y2=23x−4的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准 2020-04-08 …
已知双曲线过点(3,-2),且与椭圆有相同的焦点.(Ⅰ)求双曲线的标准方程;(Ⅱ)求以双曲线的右准 2020-04-08 …
已知双曲线过点(3,-2),且与椭圆4x2+9y2=36有相同的焦点.(1)求双曲线的标准方程;( 2020-04-08 …
关于高中抛物线1.已知抛物线的顶点是双曲线16x^2-9y^2=144的中心而焦点是双曲线的左顶点 2020-05-14 …
数学问题:已知一椭圆以抛物线x^2=2p(y+(p/2))的准线为下准线1,已知一椭圆以抛物线x^ 2020-05-19 …
双曲线M的中心在原点,并以椭圆的焦点为焦点,以抛物线的准线为右准线.(Ⅰ)求双曲线M的方程;(Ⅱ) 2020-07-20 …
两个同心圆半径分别为R和r(R>r),AB为小圆的一条直径,求证:以大圆的切线为准线,且过AB的抛 2020-07-29 …