早教吧作业答案频道 -->数学-->
数学问题:已知一椭圆以抛物线x^2=2p(y+(p/2))的准线为下准线1,已知一椭圆以抛物线x^2=2p(y+(p/2))的准线为下准线,焦点为下焦点,椭圆和抛物线分别与直线x=y√3在第一象限内交于点A,B,且A为OB的中
题目详情
数学问题:已知一椭圆以抛物线x^2=2p(y+(p/2))的准线为下准线
1,已知一椭圆以抛物线x^2=2p(y+(p/2))的准线为下准线,焦点为下焦点,椭圆和抛物线分别与直线
x=y√3在第一象限内交于点A,B,且A为OB的中点(O为原点)
(1)求椭圆的离心率
答案:e=2/3
(2)若椭圆过点(0,5),求抛物线和椭圆的方程
答案:抛物线x^2=5(y+(5/4))
椭圆x^2+(y-2)^2/9=1
2,直线l:ax-y-1=0与双曲线C:x^2-2y^2=1相交于P,Q两点
(1)当实数a为何值时,|PQ|=2√1+a^2
答案:a=±1
(2)是否存在实数a,使得以PQ为直径的圆经过坐标原点?若存在,求出a的值;若不存在,说明理由
答案:不存在
最好解析一下
1,已知一椭圆以抛物线x^2=2p(y+(p/2))的准线为下准线,焦点为下焦点,椭圆和抛物线分别与直线
x=y√3在第一象限内交于点A,B,且A为OB的中点(O为原点)
(1)求椭圆的离心率
答案:e=2/3
(2)若椭圆过点(0,5),求抛物线和椭圆的方程
答案:抛物线x^2=5(y+(5/4))
椭圆x^2+(y-2)^2/9=1
2,直线l:ax-y-1=0与双曲线C:x^2-2y^2=1相交于P,Q两点
(1)当实数a为何值时,|PQ|=2√1+a^2
答案:a=±1
(2)是否存在实数a,使得以PQ为直径的圆经过坐标原点?若存在,求出a的值;若不存在,说明理由
答案:不存在
最好解析一下
▼优质解答
答案和解析
1、 (1)、抛物线x^2=2p(y+(p/2) 准线为-p/2-p/2,y=-p,焦点F正好是原点(0,0),B点至准线距离为OB,与到焦点距离O相等,离心率为1,OA=OB/2,设A点至准线段为AM,B点至准线段为BN,设B点坐标为(x0,y0),y0=√3x0/3,OB=√[x0^2+(√3x0/3,)^2]=2x0/√3,OA=OB/2=√3x0/3,
|AM|=|OB|-y0+y0/2=2√3x0/3-√3x0/6=√3x0/2,
离心率e=OA/AM=(√3x0/3)/ √3x0/2)=2/3.
(2、)c=√(a^2-b^2),e=c/a=[√(a^2-b^2)]/a=2/3,b=√5a/3,c=2a/3,下焦点为(0,0),上焦点为(0,4a/3),椭圆中心坐标(0,2a/3),
椭圆方程:x^2/(√5/3a)^2+(y-2a/3)^2/a^2=1,又椭圆过点(0,5),代入该方程,a=3,
∴椭圆方程:x^2/5+(y-2)^2/9=1.和你的结果略有不同.
椭圆下准线与抛物线共用,y=-a/e=-3/(2/3)=-9/2,y=-9/2是共用准线,抛物线准线为y=-p/2-p/2,y=-p,-p=-9/2,p=9/2,抛物线方程为:x^2=9(y+9/4).
2、 (1)、直线l:ax-y-1=0,改成y=ax-1,代入双曲线方程,x^2-2(ax-1)^2=1,(1-2a^2)x^2-4ax-3=0,
要使直线与双曲线有交点,则△>=0,-√6/2≤a≤√6/2,若要有二个交点,则舍去等号,
-√6/2
|AM|=|OB|-y0+y0/2=2√3x0/3-√3x0/6=√3x0/2,
离心率e=OA/AM=(√3x0/3)/ √3x0/2)=2/3.
(2、)c=√(a^2-b^2),e=c/a=[√(a^2-b^2)]/a=2/3,b=√5a/3,c=2a/3,下焦点为(0,0),上焦点为(0,4a/3),椭圆中心坐标(0,2a/3),
椭圆方程:x^2/(√5/3a)^2+(y-2a/3)^2/a^2=1,又椭圆过点(0,5),代入该方程,a=3,
∴椭圆方程:x^2/5+(y-2)^2/9=1.和你的结果略有不同.
椭圆下准线与抛物线共用,y=-a/e=-3/(2/3)=-9/2,y=-9/2是共用准线,抛物线准线为y=-p/2-p/2,y=-p,-p=-9/2,p=9/2,抛物线方程为:x^2=9(y+9/4).
2、 (1)、直线l:ax-y-1=0,改成y=ax-1,代入双曲线方程,x^2-2(ax-1)^2=1,(1-2a^2)x^2-4ax-3=0,
要使直线与双曲线有交点,则△>=0,-√6/2≤a≤√6/2,若要有二个交点,则舍去等号,
-√6/2
看了 数学问题:已知一椭圆以抛物线...的网友还看了以下:
在平面直角坐标系中,已知抛物线经过点A(0,4)B(1,0)C(5,0)抛物线对称轴与X轴交于M. 2020-05-16 …
如图,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线对 2020-06-14 …
如图,以A为顶点的抛物线l2是由抛物线l1:y=x2沿x轴向右平移2个单位后得到的,两抛物线相交于 2020-06-22 …
有一个抛物线形拱桥,其最大高度为16米,跨度为40米,现在把它的示意图放在平面直角坐标系中,该抛物 2020-06-27 …
已知,抛物线的图象过A(-3,0),B(-1,0),且与y轴交于(0,3).(1)求抛物线的表达式 2020-07-15 …
从地面上以初速度2v0竖直上抛物体A,相隔时间△t后再以初速度v0从同一地点竖直上抛物体B,不计空 2020-07-26 …
1、小球A从距地H的地方自由下落,同时以速度V把小球B从A的正下方竖直向上抛,求A、B两球在空中相 2020-07-29 …
已知点A是抛物线x2=4y的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且当PA与抛物线相 2020-07-31 …
如图,抛物线y=-x2+4x+5交X轴于A、以A左B右)两点,交y轴于点C.(1)求直线BC的解析式 2020-11-01 …
这是哪的中考题?如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.如图,抛物线经过A( 2020-12-12 …