早教吧作业答案频道 -->数学-->
两道函数周期问题怎么求证?若f(x)是奇函数,且等式f(a+x)=f(a-x)对一切x∈R均成立,证明函数f(x)的周期是4a若f(x)关于(a,y0)和x=b都对称,求证f(x)的周期是4(b-a)
题目详情
两道函数周期问题怎么求证?
若f(x)是奇函数,且等式f(a+x)=f(a-x)对一切x∈R均成立,证明函数f(x)的周期是4a
若f(x)关于(a,y0)和x=b都对称,求证f(x)的周期是4(b-a)
若f(x)是奇函数,且等式f(a+x)=f(a-x)对一切x∈R均成立,证明函数f(x)的周期是4a
若f(x)关于(a,y0)和x=b都对称,求证f(x)的周期是4(b-a)
▼优质解答
答案和解析
1、已知f(a+x)=f(a-x),因为f(x)是奇函数,所以f(a-x)= -f[-(a-x)],第二式代入第一式得
f(a+x)= -f[-(a-x)],变形得
f(x+a)= -f(x-a) ………………①
仿照①式的形式有
f(x+2a)= f[(x+a)+a]= -f[(x+a)-a]= -f(x) ………………②
仿照②式的形式有
f(x+4a)= f[(x+2a)+2a]= -f(x+2a),将②式代入得
f(x+4a)= f(x)
所以函数f(x)的周期是4a
2、因为f(x)关于点(a,y0)对称,所以f(a+x)= -f(a-x)
因为f(x)关于x=b对称,所以f(b+x)=f(b-x)
将第一式的x换成x-b得f(a+x-b)= -f(a+b-x)
将第二式的x换成x-a得f(b+x-a)=f(a+b-x)
两式相加得
f[x+(b-a)]= - f[x-(b-a)] ………………①
仿照①式的形式有
f[x+2(b-a)]= f[x+(b-a)+ (b-a)]= -f[x+(b-a)- (b-a)]= -f(x) ………………②
仿照②式的形式有
f[x+4(b-a)]= f[x+2(b-a)+2(b-a)]= -f[x+2(b-a)],将②式代入得
f[x+4(b-a)]= f(x)
所以函数f(x)的周期是4(b-a)
f(a+x)= -f[-(a-x)],变形得
f(x+a)= -f(x-a) ………………①
仿照①式的形式有
f(x+2a)= f[(x+a)+a]= -f[(x+a)-a]= -f(x) ………………②
仿照②式的形式有
f(x+4a)= f[(x+2a)+2a]= -f(x+2a),将②式代入得
f(x+4a)= f(x)
所以函数f(x)的周期是4a
2、因为f(x)关于点(a,y0)对称,所以f(a+x)= -f(a-x)
因为f(x)关于x=b对称,所以f(b+x)=f(b-x)
将第一式的x换成x-b得f(a+x-b)= -f(a+b-x)
将第二式的x换成x-a得f(b+x-a)=f(a+b-x)
两式相加得
f[x+(b-a)]= - f[x-(b-a)] ………………①
仿照①式的形式有
f[x+2(b-a)]= f[x+(b-a)+ (b-a)]= -f[x+(b-a)- (b-a)]= -f(x) ………………②
仿照②式的形式有
f[x+4(b-a)]= f[x+2(b-a)+2(b-a)]= -f[x+2(b-a)],将②式代入得
f[x+4(b-a)]= f(x)
所以函数f(x)的周期是4(b-a)
看了 两道函数周期问题怎么求证?若...的网友还看了以下:
短周期x与y同一族,xyz是短周期,x与y同一族,y与z同一周.己知x原子的最外层电子数是电子层数 2020-04-08 …
周记可以用日记体来写吗?X月X日 星期X 天气X(内容)X月X日 星期X 天气X(内容).这样记叙 2020-05-16 …
如表为元素周期表前四周期的一部分,下列有关R、W、X、Y、Z五种元素的叙述中,正确的是()A.常压 2020-05-23 …
如表为元素周期表前四周期的一部分,下列有关R、W、X、Y、Z五种元素的叙述中,正确的是()A.常压 2020-05-23 …
你能在下面的X中填上适当的字,使每一行都能成为一个成语吗?(横竖都要的哦)不好意思,忘了~哈哈1. 2020-06-03 …
已知涵数f(x)=1+根号2*cos(2x-派/4)/sin(派/2-x).一,求涵数f(x)的周 2020-06-03 …
科研发现,哺乳动物的雌性细胞有两个X染色体,在胚胎发育的早期,两条X染色体中的任意一条浓缩形成“巴 2020-06-11 …
哪个天才来证明一下下面这三个命题1.若y=f(x)既关于直线x=a对称,又关于x=b(a≠b)对称 2020-06-12 …
函数y=f(x)对定义域内的任意X都有f(a+x)=f(a-x),则y=f(x)的图像关于直线x= 2020-06-25 …
一天时间又结束了,感觉不是很好!每天都有期待,尽管有些如愿以偿了,但自己最期待的事情始终都不曾如愿 2020-06-26 …