早教吧作业答案频道 -->数学-->
两道函数周期问题怎么求证?若f(x)是奇函数,且等式f(a+x)=f(a-x)对一切x∈R均成立,证明函数f(x)的周期是4a若f(x)关于(a,y0)和x=b都对称,求证f(x)的周期是4(b-a)
题目详情
两道函数周期问题怎么求证?
若f(x)是奇函数,且等式f(a+x)=f(a-x)对一切x∈R均成立,证明函数f(x)的周期是4a
若f(x)关于(a,y0)和x=b都对称,求证f(x)的周期是4(b-a)
若f(x)是奇函数,且等式f(a+x)=f(a-x)对一切x∈R均成立,证明函数f(x)的周期是4a
若f(x)关于(a,y0)和x=b都对称,求证f(x)的周期是4(b-a)
▼优质解答
答案和解析
1、已知f(a+x)=f(a-x),因为f(x)是奇函数,所以f(a-x)= -f[-(a-x)],第二式代入第一式得
f(a+x)= -f[-(a-x)],变形得
f(x+a)= -f(x-a) ………………①
仿照①式的形式有
f(x+2a)= f[(x+a)+a]= -f[(x+a)-a]= -f(x) ………………②
仿照②式的形式有
f(x+4a)= f[(x+2a)+2a]= -f(x+2a),将②式代入得
f(x+4a)= f(x)
所以函数f(x)的周期是4a
2、因为f(x)关于点(a,y0)对称,所以f(a+x)= -f(a-x)
因为f(x)关于x=b对称,所以f(b+x)=f(b-x)
将第一式的x换成x-b得f(a+x-b)= -f(a+b-x)
将第二式的x换成x-a得f(b+x-a)=f(a+b-x)
两式相加得
f[x+(b-a)]= - f[x-(b-a)] ………………①
仿照①式的形式有
f[x+2(b-a)]= f[x+(b-a)+ (b-a)]= -f[x+(b-a)- (b-a)]= -f(x) ………………②
仿照②式的形式有
f[x+4(b-a)]= f[x+2(b-a)+2(b-a)]= -f[x+2(b-a)],将②式代入得
f[x+4(b-a)]= f(x)
所以函数f(x)的周期是4(b-a)
f(a+x)= -f[-(a-x)],变形得
f(x+a)= -f(x-a) ………………①
仿照①式的形式有
f(x+2a)= f[(x+a)+a]= -f[(x+a)-a]= -f(x) ………………②
仿照②式的形式有
f(x+4a)= f[(x+2a)+2a]= -f(x+2a),将②式代入得
f(x+4a)= f(x)
所以函数f(x)的周期是4a
2、因为f(x)关于点(a,y0)对称,所以f(a+x)= -f(a-x)
因为f(x)关于x=b对称,所以f(b+x)=f(b-x)
将第一式的x换成x-b得f(a+x-b)= -f(a+b-x)
将第二式的x换成x-a得f(b+x-a)=f(a+b-x)
两式相加得
f[x+(b-a)]= - f[x-(b-a)] ………………①
仿照①式的形式有
f[x+2(b-a)]= f[x+(b-a)+ (b-a)]= -f[x+(b-a)- (b-a)]= -f(x) ………………②
仿照②式的形式有
f[x+4(b-a)]= f[x+2(b-a)+2(b-a)]= -f[x+2(b-a)],将②式代入得
f[x+4(b-a)]= f(x)
所以函数f(x)的周期是4(b-a)
看了 两道函数周期问题怎么求证?若...的网友还看了以下:
已知定义在R上的f(x)为奇函数,有f(x-4)=-f(x),求周期因为-f(x)=f(-x)所以 2020-04-06 …
求圆面积知道圆周长为8,直径为4,求S这道题应该是这样的:周长为8cm,半径为4,求S还有一道:等 2020-05-14 …
1.已知直线经过点(2.3)且在X轴、Y轴上的载距相同,求该直线的方程2.求斜率为3/4且与坐标轴 2020-06-14 …
1.在平行四边形ABCD中,E、F分别是AC上的两点,且BE⊥AC于E,DF⊥AC于F,证BE=D 2020-06-18 …
在Rt三角形ABC中,BD平分角ABC交AC于点D,DE是斜边AB的垂直平分线,则AD=BD成立吗 2020-06-27 …
已知关于x的方程x2-(2k+1)x+4(k-1\2)=0若等腰三角形ABC的边长a=4,另两边的 2020-08-02 …
1,一直正方体的8个顶点都在半径为R的球面上,求正方体的棱长2,球面上有3个点,其中任意两点的球面 2020-08-02 …
(2012•武汉元月调考)在边长为4的正方形ABCD中,以点B为圆心,BA为半径作弧AC,F为AC上 2020-12-01 …
已知函数f(x)=sin平方+2倍根3(x+圆周律/4)cos(x-圆周/4)-cos平方x-根31 2020-12-31 …
如图1,直线Y=2X-4分别交X轴、Y轴于B、A两点.交双曲线Y=K/X(x>0)于点C,三角形AO 2021-01-10 …