早教吧作业答案频道 -->数学-->
在三角形ABC中,角ABC所对的边分别是abc,且cosA=(2√5)/5,tanB=1/3.(1)求tanC的值(2)若三角形ABC最长边为1,求最短的边长
题目详情
在三角形ABC中,角A B C所对的边分别是a b c,且cosA=(2√5)/5,tanB=1/3.(1)求tanC的值(2)若三角形ABC最长边为1,求最短的边长
▼优质解答
答案和解析
第一个问题:
∵cosA=2√5/5,∴sinA=√[1-(cosA)^2]=√[1-(2√5/5)^2]=√5/5.
∴tanA=sinA/cosA=(√5/5)/(2√5/5)=1/2,又tanB=1/3,显然有:C=180°-A-B,
∴tanC=tan(180°-A-B)=-tan(A+B)=-(tanA+tanB)/(1-tanAtanB)
=-(1/2+1/3)/[1-(1/2)×(1/3)]=-(3+2)/(6-1)=-1.
第二个问题:
∴tanC<0,∴C是钝角,∴AB是△ABC中最长的边,∴AB=1.
∵tanA=1/2、tanB=1/3,∴tanA>tanB,∴A>B,∴AC是△ABC中最短的边.
由tanC=-1,得:C=135°,∴sinC=√2/2.
由tanB=1/3,得:sinB/cosB=1/3,∴(sinB)^2/(cosB)^2=1/9,
∴(cosB)^2=9(sinB)^2,∴1-(sinB)^2=9(sinB)^2,∴10(sinB)^2=1,
∴sinB=1/√10.
由正弦定理,有:AC/sinB=AB/sinC,∴AC=ABsinB/sinC=(1/√10)/(√2/2)=√5/5.
即:△ABC的最短边的长为√5/5.
∵cosA=2√5/5,∴sinA=√[1-(cosA)^2]=√[1-(2√5/5)^2]=√5/5.
∴tanA=sinA/cosA=(√5/5)/(2√5/5)=1/2,又tanB=1/3,显然有:C=180°-A-B,
∴tanC=tan(180°-A-B)=-tan(A+B)=-(tanA+tanB)/(1-tanAtanB)
=-(1/2+1/3)/[1-(1/2)×(1/3)]=-(3+2)/(6-1)=-1.
第二个问题:
∴tanC<0,∴C是钝角,∴AB是△ABC中最长的边,∴AB=1.
∵tanA=1/2、tanB=1/3,∴tanA>tanB,∴A>B,∴AC是△ABC中最短的边.
由tanC=-1,得:C=135°,∴sinC=√2/2.
由tanB=1/3,得:sinB/cosB=1/3,∴(sinB)^2/(cosB)^2=1/9,
∴(cosB)^2=9(sinB)^2,∴1-(sinB)^2=9(sinB)^2,∴10(sinB)^2=1,
∴sinB=1/√10.
由正弦定理,有:AC/sinB=AB/sinC,∴AC=ABsinB/sinC=(1/√10)/(√2/2)=√5/5.
即:△ABC的最短边的长为√5/5.
看了 在三角形ABC中,角ABC所...的网友还看了以下:
在△ABC中a,b,c分别是叫A,B,C的对边,已知角A为锐角,且(sinA)^2-(cosA)^ 2020-05-16 …
已知直角三角形的两直角边分别是为a、b,斜边长为c,且a、b、c为正整数,a为质数...已知直角三 2020-05-17 …
在锐角△ABC中,a,b,c分别为角A,B,C所对的边,又c=根号21,b=4且AB边上的高为h= 2020-05-22 …
在△ABC中,a,b,c分别为角A,B,C所对的边,a,b,c成等差数列,且a=2c在△ABC中, 2020-06-04 …
已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E 2020-07-09 …
在三角形ABC中a.b.c分别是角A.B.C的对边,且(2a+c)+bcosC=0(1)求角B的值 2020-07-30 …
三角形ABC中,已知角A,角B所对边分别对应为a,b,且a=8,tanB、tanC是一元一次方程x 2020-08-01 …
数学正、余弦定理1.在三角形ABC中,a,b,c分别是角A、B、C的对边,且tanB/tanC=( 2020-08-02 …
在三角形ABC中,a,b,c分别为角A,B,C所对的边长,且a=3,A=派/3,点D在BC边上.(一 2020-11-02 …
在三角形ABC中,a,b,c分别为角A,B,C的对边,M=(a,b),n=(sinB,-cosA)且 2021-01-11 …