早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.(1)求证:直线EF是⊙O的切线;(2)当直线DF与⊙O相切时,求⊙O的半径.

题目详情
已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.

(1)求证:直线EF是⊙O的切线;
(2)当直线DF与⊙O相切时,求⊙O的半径.
▼优质解答
答案和解析
(1)证明:连接OE.
∵△ABC是等边三角形,
∴∠A=∠B=∠C=60°;
在△BOE中,OB=OE,∠B=60°,
∴∠B=∠OEB=∠BOE=60°,
∴∠BOE=∠A=60°,
∴OE∥AC(同位角相等,两直线平行);
∵EF⊥AC,
∴OE⊥EF,即直线EF是⊙O的切线;
(2)连接DF.
∵DF与⊙O相切,
∴∠ADF=90°.
设⊙O的半径是r,则EB=r,EC=4-r,AD=4-2r.
在Rt△ADF中,∠A=60°,
∴AF=2AD=8-4r.
∴FC=4r-4;
在Rt△CEF中,∵∠C=60°,∴EC=2FC,
∴4-r=2(4r-4),
解得,r=
4
3

∴⊙O的半径是
4
3