早教吧作业答案频道 -->数学-->
已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.(1)求证:直线EF是⊙O的切线;(2)当直线DF与⊙O相切时,求⊙O的半径.
题目详情
已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.

(1)求证:直线EF是⊙O的切线;
(2)当直线DF与⊙O相切时,求⊙O的半径.

(1)求证:直线EF是⊙O的切线;
(2)当直线DF与⊙O相切时,求⊙O的半径.
▼优质解答
答案和解析
(1)证明:连接OE.
∵△ABC是等边三角形,
∴∠A=∠B=∠C=60°;
在△BOE中,OB=OE,∠B=60°,
∴∠B=∠OEB=∠BOE=60°,
∴∠BOE=∠A=60°,
∴OE∥AC(同位角相等,两直线平行);
∵EF⊥AC,
∴OE⊥EF,即直线EF是⊙O的切线;
(2)连接DF.
∵DF与⊙O相切,
∴∠ADF=90°.
设⊙O的半径是r,则EB=r,EC=4-r,AD=4-2r.
在Rt△ADF中,∠A=60°,
∴AF=2AD=8-4r.
∴FC=4r-4;
在Rt△CEF中,∵∠C=60°,∴EC=2FC,
∴4-r=2(4r-4),
解得,r=
;
∴⊙O的半径是
.

∵△ABC是等边三角形,
∴∠A=∠B=∠C=60°;
在△BOE中,OB=OE,∠B=60°,
∴∠B=∠OEB=∠BOE=60°,
∴∠BOE=∠A=60°,
∴OE∥AC(同位角相等,两直线平行);
∵EF⊥AC,
∴OE⊥EF,即直线EF是⊙O的切线;
(2)连接DF.
∵DF与⊙O相切,
∴∠ADF=90°.
设⊙O的半径是r,则EB=r,EC=4-r,AD=4-2r.
在Rt△ADF中,∠A=60°,
∴AF=2AD=8-4r.
∴FC=4r-4;
在Rt△CEF中,∵∠C=60°,∴EC=2FC,
∴4-r=2(4r-4),
解得,r=
4 |
3 |
∴⊙O的半径是
4 |
3 |
看了 已知:△ABC是边长为4的等...的网友还看了以下:
曲线[xy+yz+zx=-1x+y+z=2]在点(1,2,-1)处的一个切向量与oz轴正...曲线 2020-05-13 …
已知直线Y=-根号3x+根号3与x轴,Y轴分别交于点AB,以线段AB为直角边在第一象限内坐等腰RT 2020-05-16 …
如图,在平行四边形ABCD中,过A、B、C三点的圆O交AD于点E,且与CD相切.求证:△CED相似 2020-05-16 …
三角形AEC全等于三角形ADB,点E和点D是对应顶点1.若角A等于50度,角ABD等于39度,且角 2020-07-13 …
已知P是椭圆x^2/4y^2/3=1上的一点,F1,F2是该椭圆的两个焦点,若三角形PF1F2的内 2020-07-20 …
有关弦切角的弦切角的定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.弦切角定理就是弦 2020-07-31 …
如图,在平行四边形ABCD中,过A、B、C三点的圆O交AD于点E,且与CD相切.求证:△CED相似 2020-07-31 …
定义:由圆的切线和过切点的弦所组成的角叫做弦切角.如图1,已知AB切O于D点,CD是O的弦,则图中 2020-07-31 …
标题长长长长长长长在一个单位圆中,从圆外一点p做圆的两条切线分别为a,b.p在直线y=x-2上,连接 2021-01-02 …
如图点0在角APB的角平分线上圆0与PA相切于点C求证直线PB与圆O相切,PO的延长线与圆0交于点E 2021-01-11 …