早教吧作业答案频道 -->其他-->
f(x)=x²-a㏑x在(1,2上增,g(x)=x-a√x在(0,1)上减,求f(x),g(x)表达式求证x>0时,f(x)-g(x)=x²-2x+3有唯一解
题目详情
f(x)=x²-a㏑x在(1,2】上增,g(x)=x-a√x在(0,1)上减,求f(x),g(x)表达式
求证x>0时,f(x)-g(x)=x²-2x+3有唯一解
求证x>0时,f(x)-g(x)=x²-2x+3有唯一解
▼优质解答
答案和解析
∵f(x)=x²-a㏑x在(1,2]上增,
∴f'(x)=2x-a/x =(2x²-a)/x 在(1,2]上恒大于0
∴2x²-a在(1,2]上恒大于0
∴a≤ (2x²)在(1,2]上的最小值
即a≤2
同理,∵g(x)=x-a√x在(0,1)上减
∴g'(x)=1-a/(2√x) =[(2√x)-a]/(2√x)在(0,1)上恒小于0
∴(2√x)-a在(0,1)上恒小于0
∴a≥(2√x)在(0,1)上的最大值
即a≥2
要同时满足a≥2和a≤2,只能是a=2
∴f(x)=x²-2㏑x,g(x)=x-2√x
第二问:
证明:设h(x)=f(x)-g(x)-(x²-2x+3)=x-2lnx+2√x-3
则题目可以转化为证明 x>0时,h(x)=0有唯一解
对h(x)求导,得h'(x)=1-2/x+1/√x=(√x+2)(√x-1)/x
∴当x>1时,h'(x)>0,h(x)递增
当x<1时,h'(x)<0,h(x)递减
又h(1)=0,
∴当x>1时,h(x)>h(1)=0,
当0h(1)=0,
∴x>0时,h(x)与x轴只有一个交点为x=1
即x>0时,h(x)=0有唯一解 x=1
∴x>0时,f(x)-g(x)=x²-2x+3有唯一解 x=1
∴f'(x)=2x-a/x =(2x²-a)/x 在(1,2]上恒大于0
∴2x²-a在(1,2]上恒大于0
∴a≤ (2x²)在(1,2]上的最小值
即a≤2
同理,∵g(x)=x-a√x在(0,1)上减
∴g'(x)=1-a/(2√x) =[(2√x)-a]/(2√x)在(0,1)上恒小于0
∴(2√x)-a在(0,1)上恒小于0
∴a≥(2√x)在(0,1)上的最大值
即a≥2
要同时满足a≥2和a≤2,只能是a=2
∴f(x)=x²-2㏑x,g(x)=x-2√x
第二问:
证明:设h(x)=f(x)-g(x)-(x²-2x+3)=x-2lnx+2√x-3
则题目可以转化为证明 x>0时,h(x)=0有唯一解
对h(x)求导,得h'(x)=1-2/x+1/√x=(√x+2)(√x-1)/x
∴当x>1时,h'(x)>0,h(x)递增
当x<1时,h'(x)<0,h(x)递减
又h(1)=0,
∴当x>1时,h(x)>h(1)=0,
当0
∴x>0时,h(x)与x轴只有一个交点为x=1
即x>0时,h(x)=0有唯一解 x=1
∴x>0时,f(x)-g(x)=x²-2x+3有唯一解 x=1
看了 f(x)=x²-a㏑x在(1...的网友还看了以下:
分解因式:(1)4a2b-6ab2+2ab(2)6(a-b)2-12(a-b)(3)x(x+y)2 2020-04-08 …
先化简,再求值 (1)[(x-y)的平方+(x+y)(x-y)]÷2x 其中X=2010,y=20 2020-05-16 …
已知3f(x)+2f(x)=x,求f(x)怎么算我自己算了一半因为3f(x)+2f(x)=x3f( 2020-06-03 …
用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R,设f(x)=[x]•{x}.用[ 2020-06-04 …
设f(x)=ln10x,g(x)=x,h(x)=ex10,则当x充分大时有()A.g(x)<h(x 2020-06-18 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
已知函数f(x)=lnxa+x在x=1处的切线方程为2x-y+b=0.(Ⅰ)求实数a,b的值;(Ⅱ 2020-07-31 …
若函数f(x),g(x)的定义域都是R,则f(x)>g(x)(x∈R)的充要条件是?A.存在一个属 2020-08-02 …
求ln[(1+X)/(1-X)]的导数求ln[(1+X)/(1-X)]导数的思路和答案我知道lnx的 2020-10-31 …
我快死了……函数的一般表达式是什么?是不是y=f(x)(x∈A)?f是某个对应关系,那么这个f(x) 2020-11-01 …