早教吧作业答案频道 -->数学-->
将矩形纸片ABCD沿折痕EF对折,使点A与C重合.若已知AB=6cm,BC=8cm,求EF的长.
题目详情
将矩形纸片ABCD沿折痕EF对折,使点A与C重合.若已知AB=6cm,BC=8cm,求EF的长.


▼优质解答
答案和解析
连接AE、CF,
由折叠可知,EF⊥AC,
又∵AF∥CE,
∴∠FAO=∠ECO,
在△AOF与△COE中,
,
∴△AOF≌△COE(AAS),
∴AF=CE,
∴四边形AECF是平行四边形,
又∵AC垂直平分EF,
∴AE=AF,
∴四边形AECF为菱形(有一组邻边相等的平行四边形是菱形)
设AE=EC=xcm,则BE=(8-x)cm,
在Rt△ABC中,由勾股定理得:AC=
=10cm,
在Rt△ABE中,由勾股定理得:AB2+BE2=AE2,
即62+(8-x)2=x2,解得x=
,
根据菱形计算面积的公式,得
EC×BA=
×EF×AC,
即
×6=
×EF×10,
解得EF=
cm.

由折叠可知,EF⊥AC,
又∵AF∥CE,
∴∠FAO=∠ECO,
在△AOF与△COE中,
|
∴△AOF≌△COE(AAS),
∴AF=CE,
∴四边形AECF是平行四边形,
又∵AC垂直平分EF,
∴AE=AF,
∴四边形AECF为菱形(有一组邻边相等的平行四边形是菱形)
设AE=EC=xcm,则BE=(8-x)cm,
在Rt△ABC中,由勾股定理得:AC=
AB2+BC2 |
在Rt△ABE中,由勾股定理得:AB2+BE2=AE2,
即62+(8-x)2=x2,解得x=
25 |
4 |
根据菱形计算面积的公式,得
EC×BA=
1 |
2 |
即
25 |
4 |
1 |
2 |
解得EF=
15 |
2 |
看了 将矩形纸片ABCD沿折痕EF...的网友还看了以下:
高等代数---矩阵问题求牛人解答(01十)矩阵A=101矩阵B=(kE+A)^2其中k为实数E为单 2020-06-10 …
E(ij)是第i行,第j列值为1,其他元素都是零的n阶矩阵,证明不存在n阶矩阵A,使得A^2=E( 2020-06-12 …
设n(n≥2)阶矩阵A满足(E-A)(E+A)=O,其中E为n阶单位矩阵,若已知E+A的秩r(E+ 2020-06-12 …
求救一道线性代数的题目,大侠们进来帮帮忙~设矩阵A=101,矩阵B=(KE+A)^(2),其中K0 2020-06-12 …
辛矩阵的行列式为什么等于1一个2nX2n的矩阵M(通常布于实数或复数域上)和A,使之满足M‘AM= 2020-07-10 …
如图,已知矩形ABCD中,AD=a,DC=b,在AB上找一点E,使点E与点C、D的连线将矩形分成的 2020-07-31 …
A^(-1)=(1/|A|)×A*,其中A^(-1)表示矩阵A的逆矩阵,其中|A|为矩阵A的行列式 2020-08-02 …
如图,将矩形OABC在直角坐标系中A(4,0),B(4,3),将矩形OABC沿OB对折,使点A落在E 2020-11-28 …
试求矩阵B!设A,B为n阶矩阵,2A-B-AB=E,A^2=A,其中E为n阶单位矩阵.已知A=100 2021-02-05 …
求一矩阵证明题,设A是一个3阶矩阵,且A平方=E,A不等于正负E,则A-E和A+E中必有一个矩阵的秩 2021-02-10 …