早教吧作业答案频道 -->数学-->
关于导数和连续的问题函数在x点可导,那么在该点比连续,反之不成立.对于存在跳跃间断点的函数,例如分段函数:f(x)=x+1,x>1;f(x)=x-1,x<1;f(x)=0,x=0在x=0点存在跳跃间断点(不连续).如果
题目详情
关于导数和连续的问题
函数在x点可导,那么在该点比连续,反之不成立.
对于存在跳跃间断点的函数,例如分段函数:f(x)= x + 1,x > 1;f(x)= x -1,x < 1;f(x)=0,x = 0 在x=0点存在跳跃间断点(不连续).
如果根据左右求导公式,f'(x+0)=1,f'(x-0)=1,推出在x=0处导数存在,那么在x=0点连续.(肯定是错的,为何?)
如果根据导数定义求导,f'(x+0)=正无穷大,f'(x-0)=正无穷大,但是根据坐标图像来看不可能.(为何?)
打错字了,修正上面f(x)= x + 1,x > 1;f(x)= x -1,x < 1为f(x)= x + 1,x > 0;f(x)= x -1,x < 0
函数在x点可导,那么在该点比连续,反之不成立.
对于存在跳跃间断点的函数,例如分段函数:f(x)= x + 1,x > 1;f(x)= x -1,x < 1;f(x)=0,x = 0 在x=0点存在跳跃间断点(不连续).
如果根据左右求导公式,f'(x+0)=1,f'(x-0)=1,推出在x=0处导数存在,那么在x=0点连续.(肯定是错的,为何?)
如果根据导数定义求导,f'(x+0)=正无穷大,f'(x-0)=正无穷大,但是根据坐标图像来看不可能.(为何?)
打错字了,修正上面f(x)= x + 1,x > 1;f(x)= x -1,x < 1为f(x)= x + 1,x > 0;f(x)= x -1,x < 0
▼优质解答
答案和解析
f(x)根据左右求导公式求其在x=1点的左右导数,则左导数为0,右导数为无穷大
比如,求左导数
f'(x+0)=lim(x→1+)(f(x)-f(1))/(x-1)=lim(x→1+)(x+1)/(x-1)=+∞
求右导数
f'(x-0)=lim(x→1-)(f(x)-f(1))/(x-1)=lim(x→1+)(x-1)/(x-1)=1
f(x)根据导数定义求导,则在x=1点导数不存在
f'(1)=lim(x→1)(f(x)-f(1))/(x-1)
由于f(x)在x=1左右两侧表达式不同,上述极限还得按左右极限来求(即回到了上面求左右导数的过程),而左右极限是不同的,因此,导数是不存在的
总结:其实左右导数和求导的定义是一回事,两个是等价的,不会出现楼主所说的那种情况
比如,求左导数
f'(x+0)=lim(x→1+)(f(x)-f(1))/(x-1)=lim(x→1+)(x+1)/(x-1)=+∞
求右导数
f'(x-0)=lim(x→1-)(f(x)-f(1))/(x-1)=lim(x→1+)(x-1)/(x-1)=1
f(x)根据导数定义求导,则在x=1点导数不存在
f'(1)=lim(x→1)(f(x)-f(1))/(x-1)
由于f(x)在x=1左右两侧表达式不同,上述极限还得按左右极限来求(即回到了上面求左右导数的过程),而左右极限是不同的,因此,导数是不存在的
总结:其实左右导数和求导的定义是一回事,两个是等价的,不会出现楼主所说的那种情况
看了 关于导数和连续的问题函数在x...的网友还看了以下:
f(x)=2x-kX0当K为何值时,f(x)在X=0处连续f(x)=2x-kX<=0COSXX>0 2020-05-13 …
f(0+0)和f(0-0)都不存在,也不是无穷大,求符合要求的f(x).还有0+0和0f(0+0) 2020-05-13 …
设定义在R上的函数f(x)对任意x1、x2满足f(x1+x2)=f(x1)f(x2),且f(x)在 2020-05-17 …
定积分求导f(t)=sint/t在t=0时不存在,F(x)=f(t)dt在0到x上的定积分。那么F 2020-07-11 …
导数的连续性设f(x)可导,且f(0)=0,f(x)在0点的导数不为0,求w=lim(x→0){x 2020-07-16 …
设函数f(x)在x=0处的某邻域内有二阶连续导数,且f(0)不为0,f'(0)不为0,f''(0) 2020-07-31 …
已知函数f(x)在x=0的某个邻域内连续,且f(0)=0,limx→0f(x)1-cosx=2,则 2020-07-31 …
已知定义在(0,+∞)上的函数f(x)满足:1.对于任意的x,y∈(0,+∞)都有f(x+y)=f 2020-08-01 …
一道不等式关于x的不等式.3乘以4的x次方减去2乘以6的x次方大于0在不运用对数的情况下怎么解呢?( 2020-11-20 …
f(x)在[a,b]内存在二阶导数,且f(a)=f(b)=0,f''(x)不等于0,能不能推出存在a 2020-12-28 …