早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如果一元函数f(x0,y)在y0处连续,f(x,y0)在x0处连续,那么二元函数f(x,y)在点(x0,y0)是否必然连续?反之呢?如果一元函数f(x0,y)在y0处连续,f(x,y0)在x0处连续,那么二元函数f(x,y)在点(x0,y0)是否必然连续?反

题目详情
如果一元函数f(x0,y)在y0处连续,f(x,y0)在x0处连续,那么二元函数f(x,y)在点(x0,y0)是否必然连续?反之呢?
如果一元函数f(x0,y)在y0处连续,f(x,y0)在x0处连续,那么二元函数f(x,y)在点(x0,y0)是否必然连续?反之是否成立?烦请说明一下缘由,
▼优质解答
答案和解析
你所说的“一元函数f(x0,y)在y0处连续,f(x,y0)在x0处连续”可以简单的表述为“二元函数f(x,y)在(x0,y0)处分别按单变量连续”.如果f(x,y)在(x0,y0)点连续,则一定按单变量连续,但是按单变量连续的二元函数却不一定连续.例如函数f(x,y)=xy/(x^2+y^2) (x,y)≠(0,0)
0 (x,y)=(0,0)
它在原点按单变量连续,但函数本身在原点不连续,你可以自己证明一下.事实上,增加某些条件后才能使按单变量连续的二元函数连续,最常见增加的条件是,函数关于x(或y)连续且关于y(或x)一致.