早教吧作业答案频道 -->数学-->
证明lim(h→0)[f(x0+h)+f(x0-h)-2f(x0)]/h^2=f’’(x0)已知f’’(x0)存在.由已知知f’(x0)在x0处连续,左式=lim(h→0)[f’(x0+h)-f’(x0-h)]/2h,这一步怎么得来的?
题目详情
证明lim( h→0)[f(x0+h)+f(x0-h)-2f(x0)]/h^2=f’’(x0)
已知f’’(x0)存在.
由已知知f’(x0)在x0处连续,左式=lim(h→0)[f’(x0+h)-f’(x0-h)]/2h,这一步怎么得来的?
已知f’’(x0)存在.
由已知知f’(x0)在x0处连续,左式=lim(h→0)[f’(x0+h)-f’(x0-h)]/2h,这一步怎么得来的?
▼优质解答
答案和解析
在这里是用了洛必达法则,对分子分母同时求导
显然h趋于0的时候,
分子f(x0+h)+f(x0-h) -2f(x0)和分母h^2也都趋于0,
满足洛必达法则使用的条件,那么分子分母同时对h求导
即
原极限
=lim(h→0) [f(x0+h)+f(x0-h) -2f(x0)] / h^2
=lim(h→0) [f(x0+h)+f(x0-h) -2f(x0)]' / (h^2)'
显然[f(x0+h)+f(x0-h) -2f(x0)]'= f’(x0+h)-f’(x0-h),
而(h^2)'=2h
于是就得到了
原极限=lim(h→0) [f’(x0+h)-f’(x0-h)]/2h
显然h趋于0的时候,
分子f(x0+h)+f(x0-h) -2f(x0)和分母h^2也都趋于0,
满足洛必达法则使用的条件,那么分子分母同时对h求导
即
原极限
=lim(h→0) [f(x0+h)+f(x0-h) -2f(x0)] / h^2
=lim(h→0) [f(x0+h)+f(x0-h) -2f(x0)]' / (h^2)'
显然[f(x0+h)+f(x0-h) -2f(x0)]'= f’(x0+h)-f’(x0-h),
而(h^2)'=2h
于是就得到了
原极限=lim(h→0) [f’(x0+h)-f’(x0-h)]/2h
看了 证明lim(h→0)[f(x...的网友还看了以下:
将一个100匝的矩形放入变化的磁场中,已知在0.5s内穿过线圈的磁通量由0.04Wb变为0.36Wb 2020-03-31 …
一.已知集合P={x|ax+b-x+2=0}是一个无限集.问实数a和b的值.二.已知集合A={a| 2020-05-13 …
已知命题p:"如果函数y=f(x)在(a,b)内可导,在[a,b]上连续(图像不间断),且f(a) 2020-06-04 …
在298K时,非金属I2在0.1mol·L-1的KI溶液中的电极电势是().已知:Eθ(在298K 2020-06-05 …
1.已知:A(2,0),|AB|=4,B点和A点在同一数轴上,求B点坐标.已知:A(0,0),|A 2020-06-14 …
已知A+1B=C为简单反应,当[A]=0.5摩/升,[B]=0.6摩/升时,在某一温度下测得A的反 2020-06-28 …
已知某系统在通信联络中只可能出现八种字符,其出现的概率分别是0.05,0.29,0.07,0.08 2020-07-06 …
已知定义在(-∞,0)U(0,+∞)上的奇函数f(x)满足f(2)=0,且在(-∞,0)上是增函数 2020-08-01 …
一道物化题,用Pt电极电解SnCl2水溶液,在阴极因H2有超电势故先析出Sn(s),在阳极上析出O2 2020-10-31 …
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(已知函 2020-11-02 …