早教吧作业答案频道 -->数学-->
设n阶矩阵A满足A^2=A,求A的特征值,并证明E+A可逆.
题目详情
设n阶矩阵A满足A^2=A,求A的特征值,并证明E+A可逆.
▼优质解答
答案和解析
设j是的一特征值,则有X,使得AX=jX.
而又有
A^2×X=A(AX)=A(jX)=j(AX)=j^2×X 因为A^2=A,故有:j^2×X=j×X即 j^2=j
求得 j=0 j=1
由A^2=A 有A^2-A-2E=-2E
因为E^2=E A×E=A
故上式化成
(A+E)×(A-2E)=-2E
从而E+A可逆
而又有
A^2×X=A(AX)=A(jX)=j(AX)=j^2×X 因为A^2=A,故有:j^2×X=j×X即 j^2=j
求得 j=0 j=1
由A^2=A 有A^2-A-2E=-2E
因为E^2=E A×E=A
故上式化成
(A+E)×(A-2E)=-2E
从而E+A可逆
看了 设n阶矩阵A满足A^2=A,...的网友还看了以下:
设A为n阶方阵且满足条件A*A+A-6E=0,证明:A-E及A+3E可逆,并求它们的逆.设A为n阶 2020-05-14 …
求解线性代数设A是n阶矩阵,⑴若A满足矩阵方程A²-A+I=O,证明:A和I-A都可逆,并求解线性 2020-05-14 …
是不是对于所有n×n的矩阵A,都可以有A^k的幂运算呢,那怎么保证A^(k-1)·A=A·A^(k 2020-06-10 …
问一道大一线性代数题设A,B为n阶矩阵,且满足2B^(-1)A=A-4E,其中E为n阶单位矩阵,证 2020-06-11 …
判断题:1设A,B是同阶对称矩阵,则AB也是对称矩阵.()2设n阶方阵A,B,C满足关系式BCA= 2020-06-18 …
线性代数已知N阶方阵A满足A^2-3A-2E=0,E为N阶单位阵,试证A可逆,并求A^(-1) 2020-07-20 …
已知A是n阶方阵,且满足A2+A-2E=0(E是n阶单位矩阵)(1)证明A+E和A-3E可逆,并分 2020-07-21 …
设A,B为n阶矩阵,且满足2(B^-1)A=A-4E其中E为n阶单位矩阵,(1)证明:B-2E为可 2020-07-21 …
n阶方阵A满足A^2=O,E是n阶单位阵,则A.|E-A|≠0,但|E+A|=0B|E-An阶方阵A 2020-11-02 …
线性代数设n阶矩阵A满足关系式A^2+2A-3E=0则实数K满足什么条件时,A+kE是可逆的,并求它 2021-02-05 …