早教吧
育儿知识
作业答案
考试题库
百科
知识分享
创建时间
资源类别
相关度排序
共找到 1488480 与已知离心率为√2/2的椭圆Cx 相关的结果,耗时877 ms
已知椭圆C的中点在原点,左焦点为(-2,0),离心率e=2分之根号2求椭圆C的标准方程1求椭圆C的标准方程;2过点(0,1)的直线与椭圆C交于A,B两点,弦AB的中点M在直线x+2y=0上,求直线AB的方程
数学
已知椭圆C:x2a2+y2b2=1(a>b>0)的焦距为4,离心率为22,斜率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B.(1)求椭圆C的标准方程;(2)当椭圆C的右焦点F在以AB为直径的圆内时
数学
(1)已知椭圆C x^2/2+y^2=1 的右焦点为F .O为坐标原点 (1)求过点O,F并且与直线X=2相切的圆的方程(2)F是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为1/2,点C在X轴上
数学
C,F三点确定的园M的半径为
已知椭圆cx^2/a^2+y^2/b^2=1(a>b>0)经点A(2,1)离心率√2/2.(1)求椭圆方程(2)过点(3,0)的直线l与椭圆c交与不同的两点M,N,设直线AM和直线AN的斜率分别为k(AM),K(AN),求证k(AM)+K(AN)为定值.
数学
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)经过点A(2,1),离心率为√2/2.(1)求椭圆方程;(2)过点(3,0)的直线l与椭圆交于M,N两点,设直线AM和AN的斜率分别为KAM,KAN,求证:KAM+KAN为定值
数学
(2014•广州模拟)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,F1、F2分别为椭圆C的左、右焦点,若椭圆C的焦距为2.(1)求椭圆C的方程;(2)设M为椭圆上任意一点,以M为圆心,MF1为半
其他
1F2面积的最大值.
已知,椭圆C过点A(1,32),两个焦点为(-1,0),(1,0).(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出
数学
已知中心在原点的椭圆C的上焦点坐标为(0,1),离心率等于12.(1)求椭圆C的标准方程;(2)证明斜率为1的所有直线与椭圆C相交得到的弦的中点共线;(3)如图中的曲线为某椭圆E的一
数学
已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,F1、F2分别为椭圆C的左、右焦点,若椭圆C的焦距为2.(1)求椭圆C的方程;(2)设M为椭
数学
C的方程;(2)设M为椭圆上
已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为63,过右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点.(1)求直线ON(O为坐标原点)的斜率KON;(2)对于椭圆C上任意一点M,试证:
其他
B成立.
<
1
2
3
4
5
6
7
8
9
10
>
热门搜索: