早教吧作业答案频道 -->英语-->
英语翻译Itdoesnottakemuchtopushusintotherealmofabstractthinkinginsteadofgettinghunguponthesmallstuff.Thinkingabstractly,inturn,canleadtobetterdecisionsaswefocusonthethingsthatreallymatter,risingabovethetri
题目详情
英语翻译
It does not take much to push us into the realm of abstract thinking instead of getting hung up on the small stuff.Thinking abstractly,in turn ,can lead to better decisions as we focus on the things that really matter,rising above the trivial that could otherwise bury us.
It does not take much to push us into the realm of abstract thinking instead of getting hung up on the small stuff.Thinking abstractly,in turn ,can lead to better decisions as we focus on the things that really matter,rising above the trivial that could otherwise bury us.
▼优质解答
答案和解析
我们没用多久便进入了抽象思维的境界,而不再把精力耗费在细小的事物上了.抽象思维可以引领我们做出更好的决策,因为我们专注在真正有意义的东西上,且并摆脱了那些可能埋葬我们的琐碎事务.
看了 英语翻译Itdoesnott...的网友还看了以下:
设函数fx在点x=a可导,f(a)>0,试求极限lim(f(a+1/n)/f(a))的n次方(n趋 2020-05-16 …
已知f(x)在x=a可导,且f(x)>0,n为自然数,求lim[f(a+1/n)/f(a)]^n( 2020-06-12 …
谁知道这个结果是怎么得出来的,我怎么也算不出来.F=500*(F/500,8%,10)=7243. 2020-06-14 …
谁来为我解答这道高数题f(a)=1,f'(a)=2.求lim[f(a+1/n)/f(a)]的n次方 2020-07-02 …
抽象函数定积分问题将和式极限lim(n-->无穷)(1/n)[f(a+h/n)+f(a+2h/n) 2020-07-20 …
关于函数导数的问题1、求函数f(x)=x^n(n属于正自然数)在x=a处的导数.f'(a)=(x^ 2020-07-21 …
已知f(x)是定义在(-∞,+∞)上的不恒为零的函数且对于定义域内的任意x、y,f(x)都满足f(x 2020-11-10 …
年金终值系数问题年金终值F=A(F/A,i,n),我在财管书上看到的公式是F=A*∑(1+i)t-1 2020-12-31 …
在资金时间价值计算时,i和n给定,下列等式中正确的有().A.(F/A,i,n)=[(P/F,i,n 2021-01-14 …
1、在资金时间价值计算时,i和n给定,下列等式中正确的有?为什么?1、A(F/A,i,n)=[(P/ 2021-01-14 …