早教吧作业答案频道 -->数学-->
如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴相交于点C(0,3).当x=-4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC、BC.(1)求抛物线的解析式;(2)若点M
题目详情

3 |
(1)求抛物线的解析式;
(2)若点M、N时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)抛物线对称轴上是否存在一点F,使得△ACF是等腰三角形?若不存在请说明理由;若存在,请求出F点坐标.
▼优质解答
答案和解析
(1)由题意可得,对称轴为x=
=−1,
由对称性可得B点坐标为(1,0)
则设抛物线的解析式为y=a(x+3)(x-1),
又过点 C(0,
),代入可解得a=−
则解析式为y=−
(x+3)(x−1),
即y=−
x2−
x+
(2)∵M、N点的运动速度相同,∴BM=BN=t,
又由翻折可得,NB=NP=t,MB=MP=t
∴四边形BMPN是菱形,∴PN平行MN(即x轴)
∴△CPN相似于△CAB.
∴
=
易得AB=4,BC=2
∴
=
解得t=
∴NB=

−4+2 |
2 |
由对称性可得B点坐标为(1,0)
则设抛物线的解析式为y=a(x+3)(x-1),
又过点 C(0,
3 |
| ||
3 |
则解析式为y=−
| ||
3 |
即y=−
| ||
3 |
2
| ||
3 |
3 |
(2)∵M、N点的运动速度相同,∴BM=BN=t,
又由翻折可得,NB=NP=t,MB=MP=t
∴四边形BMPN是菱形,∴PN平行MN(即x轴)
∴△CPN相似于△CAB.
∴
PN |
AB |
CN |
CB |
∴
t |
4 |
2−t |
2 |
4 |
3 |
作业帮用户
2016-11-22
举报

看了 如图,抛物线y=ax2+bx...的网友还看了以下:
A为M*N矩阵,2、设A为m×n矩阵,下列命题中正确的是()a.若A中有n阶子式不为0,则Ax=0 2020-05-14 …
若p,q,m为整数,且三次方程x的三次方+qx+m=0有整数解x=c若p,q,m为整数,且三次方程 2020-05-14 …
设f(x)=ax²+bx+c(a,b,c∈R,a≠0)f(x)在区间[-2,2]上的最大值最小值分 2020-06-02 …
设m∈R,命题“若m≤0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0 2020-07-30 …
下列选项中叙述错误的是()A.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠ 2020-08-01 …
如图,在直角坐标平面内,0为原点,点C,D的坐标分别为(0,4),(m,n),OD=5,且m,n满 2020-08-01 …
①x²-3|x-2|-4=0②若a,b,c为实数,且a(a-b)+b(b-c)+c(c-a)=0, 2020-08-02 …
椭圆C:X^2+2Y^2=100.1)设M(t,0)若P在C上,求丨PM丨最小值2)点P在C上,求P 2020-10-31 …
在空间中,下列命题正确的是()A..若三条直线两两相交,则这三条直线确定一个平面B.若直线m与平面α 2020-11-02 …
a,b,c表示直线,M表示平面,给出下列四个命题:①若a∥M,b∥M,则a∥b;②若b⊂M,a∥b, 2020-11-02 …