早教吧作业答案频道 -->数学-->
n阶方阵A对任意n维向量x,满足x^TAx=0,充要条件为AT=-A;证明:充分性:f=x^TAx,显然有f=x^T(A^T)x,所以f= x^T(-A)x即有:x^T(-A)x= x^TAx所以 x^TAx=0必要性:x^TAx=0有x^T(A^T)x=0所以 x^T(A+ A^T)x=0
题目详情
n阶方阵A对任意n维向量x,满足x^TAx=0,充要条件为AT=-A;
证明:
充分性:
f=x^TAx,显然有f=x^T(A^T)x,所以f= x^T(-A)x
即有:x^T(-A)x= x^TAx
所以 x^TAx=0
必要性:
x^TAx=0有x^T(A^T)x=0
所以 x^T(A+ A^T)x=0
(A+ A^T)^T= A+ A^T (实对称)
又x有任意性
所以 A+ A^T=0
点评:以上方法肯定是对的,但请看以下诡异的事件:
充要条件为 A=0
证明:
充分性:略
必要性:
x^TAx=0有x^T(A^T)x=0
x^TAxx^T(A^T)x=0
即:x^T(Ax) (Ax) ^Tx=0
(Ax) (Ax) ^T实对称
又x有任意性所以(Ax) (Ax) ^T=0
所以 Ax=0
又x有任意性所以 A=0
证明:
充分性:
f=x^TAx,显然有f=x^T(A^T)x,所以f= x^T(-A)x
即有:x^T(-A)x= x^TAx
所以 x^TAx=0
必要性:
x^TAx=0有x^T(A^T)x=0
所以 x^T(A+ A^T)x=0
(A+ A^T)^T= A+ A^T (实对称)
又x有任意性
所以 A+ A^T=0
点评:以上方法肯定是对的,但请看以下诡异的事件:
充要条件为 A=0
证明:
充分性:略
必要性:
x^TAx=0有x^T(A^T)x=0
x^TAxx^T(A^T)x=0
即:x^T(Ax) (Ax) ^Tx=0
(Ax) (Ax) ^T实对称
又x有任意性所以(Ax) (Ax) ^T=0
所以 Ax=0
又x有任意性所以 A=0
▼优质解答
答案和解析
"又x有任意性所以(Ax) (Ax) ^T=0
所以 Ax=0"
这有问题,Ax是一个关于x变化的向量.
你令
A=
0 -1
1 0
就能得到反例
所以 Ax=0"
这有问题,Ax是一个关于x变化的向量.
你令
A=
0 -1
1 0
就能得到反例
看了 n阶方阵A对任意n维向量x,...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
.请教A+B=A(B^T)B+A(A^T)B能写成A+B=AB(B^T)+(A^T)AB.请教A+ 2020-06-12 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
若正数t满足a(2e-t)lnt=1(e为自然对数的底数),则实数a的取值范围为. 2020-08-02 …
我们把定义在R上,且满足f(x+T)=af(x)(其中常数a,T满足a≠1,a≠0,T≠0)的函数 2020-08-02 …
设A是阶矩阵,且满足A^3=2E,矩阵B=A^2-2A+4E求证B可逆,并且求出B^-1当A^3=6 2020-11-03 …
数列{an}中,如果存在非零常数T,使得an+T=an对于任意的非零自然数n均成立,那么就称数列{a 2020-11-18 …
递回关系式的运算公式(数列)以下是推导一个公式"a=a+r(1-p^n)/(1-p)"的过程a=p* 2021-01-13 …