早教吧作业答案频道 -->数学-->
数列an的前n项和为sn,存在常数A,B,C使得an+sn=An^2+Bn+C对任意正整数n都成立.1,数列an是等差数列,(1)若an=2n-1,求A,B,C的值.(2)若C=0,a1=1,bn=1/an*an+1,P=∑(1+bn) (∑上面是2013,下面是i=1)2,若A=-1/2,B=
题目详情
数列an的前n项和为sn,存在常数A,B,C使得an+sn=An^2+Bn+C对任意正整数n都成立.
1,数列an是等差数列,
(1)若an=2n-1,求A,B,C的值.
(2)若C=0,a1=1,bn=1/an*an+1,P=∑(1+bn) (∑上面是2013,下面是i=1)
2,若A=-1/2,B=-3/2,C=1,设Cn=an+n
(1)求证:数列cn为等比数列.
(2)求数列nCn的前n项和Tn.
1,数列an是等差数列,
(1)若an=2n-1,求A,B,C的值.
(2)若C=0,a1=1,bn=1/an*an+1,P=∑(1+bn) (∑上面是2013,下面是i=1)
2,若A=-1/2,B=-3/2,C=1,设Cn=an+n
(1)求证:数列cn为等比数列.
(2)求数列nCn的前n项和Tn.
▼优质解答
答案和解析
1.(1).若an=2n-1,则Sn=n^2,所以2n-1+n^2=An^2+Bn+C,对比系数,A=1,B=2,C=-1;
(2)若C=0,a1=1,设an=1+(n-1)d=nd-d+1.所以Sn=n+n(n-1)d/2,所以,Sn+an=(d/2+1)n+d/2n^2-d+1,因为C=0,所以d=1,所以an=n,所以bn=1/an*(an+1),所以P=(1+1+1+.+1)+(1-1/2+1/2-1/3+.-1/2014)=2013+2013/2014=4096195/2014;
2.(1)因为an+Sn=An^2+Bn+C .1
所以a(n-1)+S(n-1)=A(n-1)^2+B(n-1)+C.2 『小括号里是下标』
1式减2式,得
2an=a(n-1)-n-1
两边加上2n,得2(an+n)=a(n-1)+n-1
即2Cn=C(n-1)
所以是公比为1/2的等比数列;
(2)求a1
a1=S1
所以2a1=-1,a1=-1/2
所以an=-1/2*(1/2)^(n-1)
所以Tn=-1/2*(1+2*1/2+3*(1/2)^2+4*(1/2)^3+.+n*(1/2)^(n-1))
1/2Tn=-1/2*(1*1/2+2*(1/2)^2+3*(1/2)^3+4*(1/2)^4+.+n*(1/2)^n)
上式减下式,得
1/2Tn=-1/2*(1+1/2+(1/2)^2+.+(1/2)^(n-1)-n*(1/2)^n)=-1/2*(2-(1/2)^(n-1)-n*(1/2)^n)
乘上2,得Tn=2-(2+n)*(1/2)^n OK
(2)若C=0,a1=1,设an=1+(n-1)d=nd-d+1.所以Sn=n+n(n-1)d/2,所以,Sn+an=(d/2+1)n+d/2n^2-d+1,因为C=0,所以d=1,所以an=n,所以bn=1/an*(an+1),所以P=(1+1+1+.+1)+(1-1/2+1/2-1/3+.-1/2014)=2013+2013/2014=4096195/2014;
2.(1)因为an+Sn=An^2+Bn+C .1
所以a(n-1)+S(n-1)=A(n-1)^2+B(n-1)+C.2 『小括号里是下标』
1式减2式,得
2an=a(n-1)-n-1
两边加上2n,得2(an+n)=a(n-1)+n-1
即2Cn=C(n-1)
所以是公比为1/2的等比数列;
(2)求a1
a1=S1
所以2a1=-1,a1=-1/2
所以an=-1/2*(1/2)^(n-1)
所以Tn=-1/2*(1+2*1/2+3*(1/2)^2+4*(1/2)^3+.+n*(1/2)^(n-1))
1/2Tn=-1/2*(1*1/2+2*(1/2)^2+3*(1/2)^3+4*(1/2)^4+.+n*(1/2)^n)
上式减下式,得
1/2Tn=-1/2*(1+1/2+(1/2)^2+.+(1/2)^(n-1)-n*(1/2)^n)=-1/2*(2-(1/2)^(n-1)-n*(1/2)^n)
乘上2,得Tn=2-(2+n)*(1/2)^n OK
看了 数列an的前n项和为sn,存...的网友还看了以下:
(1),设g(x)=1+x,且当x≠0时,f(g(x))=(1-x)/x,求f(1/2)(2),f 2020-04-26 …
已知集合A={xx²+(2-a)x+1=0,x∈R},若A是R﹢的子集,求实数a的取值范围解析是分 2020-05-14 …
已知集合A={x│x∧2+(2-a)x+1=0,x∈R},若A包含于{x│x>0},求实数a的取值 2020-05-15 …
高三文科数学将函数y=-sinx[0,π]的图像绕原点顺时针方向旋转角a[0,π/2]得到曲线C, 2020-05-16 …
已知函数f(x)=-x^2-2x,g(x)=x+1/4x(x>0)g(x)=x+1(x≤0),若方 2020-06-11 …
高数证明题证明:若C是平面光滑曲线,且L是任意方向的射线,则∮[C]cos(L,N)ds=0其中N 2020-07-19 …
小明和小亮做加减法游戏,小明在一个加数后面多写了一个0,得到的和为242,而小亮在另一个加数后面多 2020-07-19 …
已知二次函数y=f(x)在x=处取得最小值-(t>0),f(1)=0.(1)求y=f(x)的表达式 2020-07-20 …
设A=1-112-22-11-1问A能否对角化,若A可对角化,求P,并求A的n次方我知道先由|λE 2020-07-30 …
求复合函数:(1),设f(x)={x^2+2x若x≤0{2若x>0请注意这是一题分段函数求f(x) 2020-08-02 …